Bài giảng Đồ họa máy tính và thực tế ảo - Bài 3: Xén tỉa-Clipping

Clipping đoạn thẳng

z Tiến trình, giải thuật kiểm tra chấp nhận các

đoạn thẳng nằm trong và loại bỏ các đoạn thẳng

nằm ngoài dựa trên 2 điểm đầu cuối

z Lý do:

z Không kiểm tra mọi điểm trên đoạn thẳng

z Hầu hết các đoạn thẳng với 1 màn hình hiển thị

đều được chấp nhận hoặc loại bỏ

z Rất ít các đợn thẳng cắt cửa sổ hiển thị

pdf 10 trang phuongnguyen 12000
Bạn đang xem tài liệu "Bài giảng Đồ họa máy tính và thực tế ảo - Bài 3: Xén tỉa-Clipping", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Đồ họa máy tính và thực tế ảo - Bài 3: Xén tỉa-Clipping

Bài giảng Đồ họa máy tính và thực tế ảo - Bài 3: Xén tỉa-Clipping
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
1
1
Các giải thuật cơ sở
Le Tan Hung
hunglt@it-hut.edu.vn
0913030731Bài 3
2
Nội dung 
z Các giải thuật xén tỉa - Clipping
z Các thuật toán tô miền kín
z Phép xử lý Antialiasing
3
Xén tỉa - Clipping
z Khái niệm
Xén tỉa là tiến trình tự động xác định 
các điểm của 1 đối tượng nằm trong 
hay ngoài cửa sổ hiển thị
z Tiết kiệm thời gian tiến trình rasterize 
bỏ qua phần nằm ngoài cửa sổ hiển 
thị
z Clipping điểm
xmin ≤ x ≤ xmax 
ymin ≤ y ≤ ymax
xmin xmax
ymax
ymin
4
Clipping đoạn thẳng
z Tiến trình, giải thuật kiểm tra chấp nhận các 
đoạn thẳng nằm trong và loại bỏ các đoạn thẳng 
nằm ngoài dựa trên 2 điểm đầu cuối
z Lý do:
z Không kiểm tra mọi điểm trên đoạn thẳng
z Hầu hết các đoạn thẳng với 1 màn hình hiển thị 
đều được chấp nhận hoặc loại bỏ
z Rất ít các đợn thẳng cắt cửa sổ hiển thị
5
Giải thuật Cohen Sutherland Outcode
z Giải thuật Cohen-Sutherland
thực hiện nhanh với các trương 
hợp đoạn thẳng nằm trong hay 
ngoài cửa sổ hiện thị
z Mỗi điểm đầu cuối được gán mã 
code phụ thuộc vào vị trí trong 
mặt phẳng mã
z p.code = 0000
z If p.x > P.code or 0001
z If p.y > P.code or 0100
z If p.x >= xmax >> P.code or 0010
z If p.y >= ymax >> P.code or 1000
6
z If P1.code OR P2.code == 0000 
– Chấp nhận toàn đoạn thẳng
z If P1.code AND P2.code != 0000 
– Loại 
z Với truờng hợp cắt, giải thuật xác định lại 
điểm đầu cuối là giao của đoạn thẳng và
khung bao của cửa sổ hiển thị
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
2
7
Liabarsky
z x = x1 + (x2 - x1)u = x1 + uDx
z y = y1 + (y2 - y1)u = y1 + uDy
z xmin ≤ x1 + Dx.u ≤ xmax ⇔ x ∈ [xm, xM]
z ymin ≤ y1 + Dy.u ≤ ymax ⇔ y ∈ [ym, yM]
z Pk u ≤ qk k = 1, 2, 3, 4
⎪⎪⎩
⎪⎪⎨
⎧
=
−=
=
−=
DyP
DyP
DxP
DxP
4
3
2
1
⎪⎪⎩
⎪⎪⎨
⎧
−=
−=
−=
−=
14
13
12
11
yyq
yyq
xxq
xxq
M
m
M
m
8
z Nếu Pk = 0 : điều đó tương đương với việc đoạn thẳng
đang xét song song với cạnh thứ k của hình chữ nhật
clipping.
z a) Nếu qk < 0 ⇒ Đường thẳng nằm ngoài cửa sổ (hệ bất
phương trình trên vô nghiệm)
z b)Nếu qk >= 0 thì đoạn thẳng nằm trong hoặc nằm trên
cạnh của cửa sổ clipping.
z Hệ bất phương trình luôn thoả mãn.
9
z Nếu Pk ≠ 0 : đoạn thẳng đang xét sẽ cắt cạnh k tương ứng
của cửa sổ clipping tại vị trí trên đoạn thẳng uk = qk/Pk. 
– Pk < 0 đoạn thẳng có dạng đi từ ngoài vào trong
z bất phương trình sẽ có dạng u ≥ qk/Pk Ù u ≥ uk. 
– Pk > 0 
z u ≥ uk sẽ thuộc cửa sổ hiển thị.
z bất phương trình sẽ có dạng u ≤ qk/Pk
z u ≤ uk với uk = qk/Pk là giao của đoạn thẳng với
cạnh k của cửa sổ clipping
z đoạn thẳng có dạng đi từ trong ra ngoài so với cạnh
k.
10
z Pk < 0 và uk < 0 
– cạnh k của cửa sổ clipping cắt đoạn thẳng tại phần mở rộng
nằm ngoài đoạn thẳng. 
– uk ≤ u< 0 thoả mãn bất phương trình sẽ không nằm trên đoạn
thẳng cần xét. 
– => uk sẽ nhận là 0 khi uk<0 
z Pk > 0 và uk > 1
– => uk tương ứng sẽ nhận giá trị 1. 
z điểm nằm trong cửa sổ clipping sẽ có dạng như sau:
– U1 ≤ u ≤ U2
11
{ } ⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎭⎬
⎫
⎩⎨
⎧ <=∪= 0,:0max1 k
k
k
kk PP
quuU
{ } ⎟⎟⎠
⎞
⎜⎜⎝
⎛
⎭⎬
⎫
⎩⎨
⎧ >=∪= 0,:1min2 k
k
k
kk PP
quuU
12
Sutherland-Hodgman Clipping
z Basic idea:
– Consider each edge of the viewport individually
– Clip the polygon against the edge equation
– After doing all planes, the polygon is fully clipped
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
3
13
Sutherland-Hodgman Clipping
z Input/output for algorithm:
– Input: list of polygon vertices in order 
– Output: list of clipped poygon vertices consisting of 
old vertices (maybe) and new vertices (maybe)
z Note: this is exactly what we expect from the 
clipping operation against each edge
14
Sutherland-Hodgman Clipping
z Sutherland-Hodgman basic routine:
– Go around polygon one vertex at a time
– Current vertex has position p
– Previous vertex had position s, and it has been added 
to the output if appropriate
15
Sutherland-Hodgman Clipping
z Edge from s to p takes one of four cases:
(Purple line can be a line or a plane)
inside outside
s
p
p output
inside outside
s
p
no output
inside outside
s
p
i output
inside outside
sp
i output
p output
16
Sutherland-Hodgman Clipping
z Four cases:
– s inside plane and p inside plane
z Add p to output
z Note: s has already been added
– s inside plane and p outside plane
z Find intersection point i
z Add i to output
– s outside plane and p outside plane
z Add nothing
– s outside plane and p inside plane
z Find intersection point i
z Add i to output, followed by p
17
Giải thuật Cyrus-Beck
Liang Barsky
z Giải Cohen-Sutherland yêu cầu cửa sổ là hình chữ 
nhật, các cạnh là cạnh của màn hình
z Vấn đề nảy sinh khi cửa sổ clip là 1 đa giác bất kỳ 
hoặc hình chữ nhật quay đi 1 góc
z Giải thuật Liang-Barsky tối ưu khi tìm giao điểm của 
đoạn thẳng với cử sổ hiển thị
z Nicholl-Lee-Nicholl reducing redundant boundary 
clipping by identifying edge and corner regions
18
3-D Clipping
z Before actually drawing on the screen, we have 
to clip (Why?)
z Can we transform to screen coordinates first, 
then clip in 2D?
– Correctness: shouldn’t draw objects behind viewer 
(what will an object with negative z coordinates do in 
our perspective matrix?) (draw it)
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
4
19
Giải thuật đường biên (Boundary - File 
Algorithm)
z Giải_thuật_đường_biên ( x, y )
Color : biến mầu
Begin 
Color = Readpixel ( x, y );
If ( Color = mầu tô ) or ( Color = mầu đường biên ) 
Kết thúc vì chạm biên
hoặc chạm phần đã tô
Else 
Putcolor(x,y, mauto)
Giải_thuật_đường_biên ( x+1, y );
Giải_thuật_đường_biên ( x-1, y );
Giải_thuật_đường_biên ( x, y+1 );
Giải_thuật_đường_biên ( x, y-1 );
// Thực hiện lại giải thuật với các điểm lân cận
End. 
20
Edge Walking
z Basic idea: 
– Draw edges vertically
– Fill in horizontal spans for each scanline
– Interpolate colors down edges
– At each scanline, interpolate 
edge colors across span
21
Edge Walking: Notes
z Order vertices in x and y
– 3 cases: break left, break right, no break
z Walk down left and right edges
– Fill each span
– Until breakpoint or bottom vertex is reached
z Advantage: can be made very fast
z Disadvantages: 
– Lots of finicky special cases
– Tough to get right
– Need to pay attention to fractional offsets
22
Edge Walking: Notes
z Fractional offsets:
z Be careful when interpolating color values!
z Also: beware gaps between adjacent edges
23
Giải thuật đường quét
Scan-Line Algorithm
z The scan-line algorithm uses edge-coherence and 
incremental integer calculations for maximum efficiency:
– Tạo bảng edge table (ET) tập của các cạnh đa giác theo thứ tự
giá trị ymin của chúng
– Tạo bảng active edge table (AET) tập các cạnh giao vớI đoạn
thẳng quét scan-line
z Trong tiến trình quét các cạnh sẽ chuyển từ ET ra AET. 
z Các cạnh sẽ ở trong AET cho đến khi giá trị ymax của
cạnh đạt tới = scanline
z Lúc nay cạnh sẽ bị loại ra khỏi AET.
24
Edge Table (ET)
Note: line (8,6) → (13,6) has been deleted according to the scan rules
ymax xmin
numerator
denominator
scan-line
(0,0)
(15,15)
5
31 −=⇒
m
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
5
25
Giải thuật dòng quét-Scanline cho việc tô mầu vùng
AET =
yma
x
current x denominator current numerator
round up
round down
26
Active Edge Table (AET)
ymax current x denominator
AET =
current numerator
round up
round down
27
Scan-Line Algorithm
y = y of first non empty entry in ET
AET = null
repeat
move all ET entries in slot y to AET
sort AET entries according to xminfill spans using pairs of AET entries
for all AET members
if ymax = y then remove from AETy = y+1
for all AET members
update numerator
if numerator>denominator
numerator=numerator-denominator
x = x+1
until AET and ET empty
28
Rasterizing Triangles
z Interactive graphics hardware commonly uses 
edge walking or edge equation techniques for 
rasterizing triangles
z Two techniques we won’t talk about much:
– Recursive subdivision of primitive into micropolygons
(REYES, Renderman)
– Recursive subdivision of screen (Warnock)
29
Recursive Triangle Subdivision
30
Edge Equations
z An edge equation is simply the equation of the 
line containing that edge
– Q: What is the equation of a 2D line?
– A: Ax + By + C = 0
– Q: Given a point (x,y), what does plugging x & y into 
this equation tell us?
– A: Whether the point is:
z On the line: Ax + By + C = 0 
z “Above” the line: Ax + By + C > 0 
z “Below” the line: Ax + By + C < 0 
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
6
31
Edge Equations
z Edge equations thus define two half-spaces:
z And a triangle can be defined as the intersection of 
three positive half-spaces:
A1x + 
B1y + 
C1 < 0
A
2 x + B
2 y + C
2 < 0
A 3
x 
+ 
B 3
y +
 C
3
< 
0
A1x + 
B1y + C1
> 0
A 3
x 
+ 
B 3
y +
 C
3
> 
0 A2 x + B
2 y + C
2 > 0
32
Edge Equations
z Sosimply turn on those pixels for which all 
edge equations evaluate to > 0:
+++
-
-
-
33
Using Edge Equations
z An aside: How do you suppose edge equations 
are implemented in hardware?
z How would you implement an edge-equation 
rasterizer in software?
– Which pixels do you consider?
– How do you compute the edge equations?
– How do you orient them correctly?
34
Using Edge Equations
z Which pixels: compute min,max bounding box
z Edge equations: compute from vertices
z Orientation: ensure area is positive (why?)
35
Hiệu ứng răng cưa
Aliasing - Antialiasing
z Aliasing: signal processing term 
with very specific meaning
z Aliasing: computer graphics term 
for any unwanted visual artifact
z Antialiasing: computer graphics 
term for avoiding unwanted 
artifacts
36
Signal Processing
z Raster display: regular sampling of a continuous 
function (Really?)
z Think about sampling a 1-D function:
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
7
37
Signal Processing
z Sampling a 1-D function:
38
Signal Processing
z Sampling a 1-D function:
39
Signal Processing
z Sampling a 1-D function:
– What do you notice?
40
Signal Processing
z Sampling a 1-D function: what do you notice?
– Jagged, not smooth
41
Signal Processing
z Sampling a 1-D function: what do you notice?
– Jagged, not smooth
– Loses information!
42
Antialiasing
z Méo thông tin trong quá trình lấy mẫu tần số
thấp
z In raster images – leads to jagged edges with 
hiệu ứng bậc thang – staircase effect
z Việc làm giảm hiệu ứng méo thông tin bằng 
phương pháp bù trừ
sampling frequency
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
8
43
Phương pháp khử hiệu ứng răng cưa
Antialiasing Methods
1. Cố định tín hiệu bằng phương pháp lọc-prefiltering:
Giảm độ rộng dải tần tín hiệu bỏi bộ lọc thấphơn trước khi
lấy mẫu.
Highest quality method, but often impractical.
2. Cố định mẫu bằng siêu mẫu supersampling:
Use more samples to raise the Nyquist frequency.
Simple and widely used.
3. Cố định mẫu bằng phương pháp mẫu bất kỳ
- stochastic sampling:
Sample randomly, not uniformly.
Relatively simple, usually used in combination with 
supersampling.
44
Prefiltering – Lọc
z Eliminate high frequencies before sampling 
(Foley & van Dam p. 630)
– Convert I(x) to F(u)
– Apply a low-pass filter (e.g., multiply F(u) by a box 
function)
– Then sample. Result: no aliasing!
z Problem: most rendering algorithms generate 
sampled function directly
– e.g., Z-buffer, ray tracing
45
Antialiasing in the 
Continuous Domain
z Problem with prefiltering:
– Sampling and image generation inextricably linked in 
most renderers
z Z-buffer algorithm
z Ray tracing
– Why?
z Sự cuốn méo với các miền liên tục do hiệu ứng 
xấp xỉ của phương pháp tiền lọc
46
Phương pháp siêu mẫu
z Supersampling cons
– Doesn’t eliminate aliasing, just shifts the Nyquist limit 
higher
z Can’t fix some scenes (e.g., checkerboard)
– Tăng bộ nhớ cho việc lưu trữ
z Supersampling pros
– Relatively easy
– Often works all right in practice
– Can be added to a standard renderer
47
Antialiasing by 
supersampling
48
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
9
49
anti aliasing (1)
50
Antialiasing (2)
51
The A-Buffer
z Idea: approximate continuous filtering by 
subpixel sampling
z Summing areas now becomes simple
52
The A-Buffer
z Advantages: 
– Incorporating into scanline renderer reduces storage costs 
dramatically
– Processing per pixel depends only on number of visible 
fragments
– Can be implemented efficiently using bitwise logical ops on 
subpixel masks
z Disadvantages
– Still basically a supersampling algorithm
– Not a hardware-friendly algorithm
z Lists of potentially visible polygons can 
grow without limit
z Work per-pixel non-deterministic
53
Recap:
Antialiasing Strategies
z Supersampling: sample at higher resolution, then 
filter down
– Pros:
z Conceptually simple
z Easy to retrofit existing renderers
z Works well most of the time
– Cons:
z High storage costs
z Doesn’t eliminate aliasing, just shifts Nyquist limit upwards
54
Antialiasing Strategies
z A-Buffer: approximate prefiltering of continuous 
signal by sampling
– Pros:
z Integrating with scan-line renderer keeps storage costs low
z Can be efficiently implemented with clever bitwise operations
– Cons: 
z Still basically a supersampling approach
z Doesn’t integrate with ray-tracing
Khoa CNTT-DDHBK Hà nội
Email: hunglt@it-hut.edu.vn
0913030731
10
55
Stochastic Sampling
z An intuitive argument:
– In stochastic sampling, every region of the image has a finite 
probability of being sampled
– Thus small features that fall between uniform sample points tend
to be detected by non-uniform samples
z Integrating with different renderers:
– Ray tracing: 
z It is just as easy to fire a ray one direction as another
– Z-buffer: hard, but possible
z Notable example: REYES system (?)
z Using image jittering is easier (more later)
– A-buffer: nope
z Totally built around square pixel filter and primitive-to-sample 
coherence 56
Stochastic Sampling
z Idea: randomizing distribution of samples 
scatters aliases into noise
z Problem: what type of random distribution 
to adopt?
z Reason: type of randomness used affects 
spectral characteristics of noise into which high 
frequencies are converted
z Problem: given a pixel, how to distribute points 
(samples) within it?

File đính kèm:

  • pdfbai_giang_do_hoa_may_tinh_va_thuc_te_ao_bai_3_xen_tia_clippi.pdf