Ứng dụng viễn thám và GIS trong đánh giá biến động diện tích rừng huyện Đại Lộc, tỉnh Quảng Nam giai đoạn 1988-2017

Tóm tắt. Đại Lộc là một trong những huyện thuộc lưu vực sông Vu Gia–Thu Bồn có diện

tích rừng lớn của tỉnh Quảng Nam nói riêng và của Việt Nam nói chung. Tuy nhiên, qua

giai đoạn 30 năm xây dựng và phát triển (1988–2017) thì diện tích rừng biến động khá mạnh

do khai thác quá mức, chuyển đổi mục đích sử dụng đất và sự phát triển của cơ sở hạ tầng.

Dữ liệu ảnh Landsat-5 TM , 8 OLI và bản đồ hiện trạng rừng huyện Đại Lộc năm 2016 đã

được sử dụng trong nghiên cứu. Kết quả nghiên cứu cho thấy độ chính xác tổng thể của kết

quả phân loại ảnh vệ tinh qua các năm đều trên 90%, hệ số Kappa dao động từ 0,88 đến 0,97.

Diện tích rừng tự nhiên năm 1988 là 30.278,1 ha (52,16%) giảm xuống còn 16.895,3 ha (trong

năm 2017 chiếm 29,10%). Trong khi đó diện tích rừng trồng lại tăng lên mạnh (tăng 9.107,4

ha) so với năm 1988 là 14.138,5 ha. Nghiên cứu này nhằm góp phần vào công tác quản lý và

giám sát bền vững tài nguyên rừng huyện Đại Lộc.

pdf 14 trang phuongnguyen 1220
Bạn đang xem tài liệu "Ứng dụng viễn thám và GIS trong đánh giá biến động diện tích rừng huyện Đại Lộc, tỉnh Quảng Nam giai đoạn 1988-2017", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Ứng dụng viễn thám và GIS trong đánh giá biến động diện tích rừng huyện Đại Lộc, tỉnh Quảng Nam giai đoạn 1988-2017

Ứng dụng viễn thám và GIS trong đánh giá biến động diện tích rừng huyện Đại Lộc, tỉnh Quảng Nam giai đoạn 1988-2017
 Tạp chí Khoa học Đại học Huế: Khoa học Trái đất và Môi trường; ISSN 2588-1183 
Vol. 128, No. 4A, 2019, P. 21-34; DOI: 10.26459/hueuni-jese.v128i4A.5238 
* Corresponding: hoangcongtin@hueuni.edu.vn 
Ngày gửi: 10-5-2019; Hoàn thành phản biện: 07-6-2019; Nhận đăng: 26-7-2019 
ỨNG DỤNG VIỄN THÁM VÀ GIS TRONG ĐÁNH GIÁ BIẾN 
ĐỘNG DIỆN TÍCH RỪNG HUYỆN ĐẠI LỘC, TỈNH QUẢNG 
NAM GIAI ĐOẠN 1988 – 2017 
Nguyễn Hữu Hải, Hoàng Công Tín*, Ngô Hữu Bình 
Khoa Môi trường, Trường Đại học Khoa học, Đại học Huế 
Tóm tắt. Đại Lộc là một trong những huyện thuộc lưu vực sông Vu Gia–Thu Bồn có diện 
tích rừng lớn của tỉnh Quảng Nam nói riêng và của Việt Nam nói chung. Tuy nhiên, qua 
giai đoạn 30 năm xây dựng và phát triển (1988–2017) thì diện tích rừng biến động khá mạnh 
do khai thác quá mức, chuyển đổi mục đích sử dụng đất và sự phát triển của cơ sở hạ tầng. 
Dữ liệu ảnh Landsat-5 TM , 8 OLI và bản đồ hiện trạng rừng huyện Đại Lộc năm 2016 đã 
được sử dụng trong nghiên cứu. Kết quả nghiên cứu cho thấy độ chính xác tổng thể của kết 
quả phân loại ảnh vệ tinh qua các năm đều trên 90%, hệ số Kappa dao động từ 0,88 đến 0,97. 
Diện tích rừng tự nhiên năm 1988 là 30.278,1 ha (52,16%) giảm xuống còn 16.895,3 ha (trong 
năm 2017 chiếm 29,10%). Trong khi đó diện tích rừng trồng lại tăng lên mạnh (tăng 9.107,4 
ha) so với năm 1988 là 14.138,5 ha. Nghiên cứu này nhằm góp phần vào công tác quản lý và 
giám sát bền vững tài nguyên rừng huyện Đại Lộc. 
Từ khóa: biến động diện tích rừng, dữ liệu ảnh viễn thám, huyện Đại Lộc, lưu vực sông Vu 
Gia–Thu Bồn 
1 Đặt vấn đề 
Hiện nay, cùng với sự phát triển nhanh chóng của khoa học kỹ thuật, công nghệ viễn 
thám và hệ thống thông tin địa lý (GIS) đang là hướng đi nghiên cứu góp phần mang lại sự biến 
đổi mạnh mẽ trong hoạt động quản lý các nguồn tài nguyên thiên nhiên nói chung và tài 
nguyên rừng nói riêng [1]. Trên thế giới và ở Việt Nam đã có rất nhiều công trình nghiên cứu 
ứng dụng công nghệ viễn thám và GIS để phục vụ cho công tác quản lý tài nguyên và môi 
trường, trong đó có thể kể đến các công trình tiêu biểu như Hansen & cs. (2008) đã sử dụng dữ 
liệu MODIS và Landsat để giám sát biến động lớp phủ rừng ở lưu vực Congo [2]; Ravat & cs. 
(2015) đã sử dụng phương pháp phân tích ảnh viễn thám và GIS trong đánh giá biến động sử 
dụng đất ở vùng Almora, Ấn Độ [3]; Đoàn Duy Hiếu & cs. (2016) đã đánh giá biến động rừng 
huyện Ia pa, tỉnh Gia Lai trên tư liệu viễn thám đa thời gian và GIS [4]; và Nguyễn Hải Hòa & 
cs. (2017) đã sử dụng ảnh viễn thám Landsat và GIS xây dựng bản đồ biến động diện tích rừng 
tại vùng đệm Vườn Quốc gia Xuân Sơn [5]. 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
22 
Huyện Đại Lộc, tỉnh Quảng Nam có tổng diện tích đất tự nhiên là 57.905,6 ha trong tổng 
diện tích đất có rừng trên địa bàn huyện là 33.264 ha [6]. Trải qua quá trình phát triển kinh tế - 
xã hội thì diện tích rừng huyện Đại Lộc đã suy giảm nhanh chóng do khai thác quá mức, 
chuyển đổi loại hình sử dụng đất, xây dựng nhà ở và các công trình. Tuy nhiên, đến nay vẫn 
chưa có một nghiên cứu nào về đánh giá biến động diện tích rừng ở huyện Đại Lộc theo thời 
gian. Vì vậy thực sự cần phải có một phương pháp giám sát rừng một cách hợp lý phục vụ 
quản lý hiệu quả. Do đó, nghiên cứu ứng dụng viễn thám và GIS trong đánh giá biến động diện 
tích rừng huyện Đại Lộc, tỉnh Quảng Nam, giai đoạn 1988 – 2017 nhằm phân tích sự thay đổi 
các lớp phủ rừng và loại hình sử dụng đất góp phần phục vụ cho công tác quản lý và giám sát 
tài nguyên rừng một cách bền vững. 
2 Tư liệu và phương pháp nghiên cứu 
2.1 Tư liệu nghiên cứu 
Thông tin và số liệu thứ cấp được thu thập, tìm hiểu, kế thừa và hệ thống hóa các tài liệu 
nghiên cứu trước đây có liên quan đến đề tài, từ đó lựa chọn các thông tin cần thiết phục vụ cho 
mục đích nghiên cứu. Thu thập thông tin, số liệu về điều kiện tự nhiên, kinh tế xã hội, dân số từ 
các báo cáo và tài liệu thống kê từ các đơn vị như: Phòng Tài nguyên và Môi trường; Chi cục 
thống kê huyện Đại Lộc – Quảng Nam và Phân viện Điều tra Quy hoạch rừng Trung Trung Bộ. 
Tư liệu bản đồ hiện trạng rừng của huyện Đại Lộc năm 2016, bộ quy tắc Rule set để chạy 
phân loại tự động trên phần mềm eCognition đã được kế thừa từ Phân viện Điều tra Quy hoạch 
rừng Trung Trung Bộ. Dữ liệu ảnh viễn thám Landsat các năm 1988, 1998, 2010 và 2017 chụp 
khu vực nghiên cứu - huyện Đại Lộc, tỉnh Quảng Nam - được tải từ trang web của Cục Địa chất 
Hoa Kỳ (https://earthexplorer.usgs.gov/) (Bảng 1). 
Bảng 1. Dữ liệu ảnh vệ tinh sử dụng trong nghiên cứu. 
TT Năm Mã ảnh Loại dữ liệu Ngày chụp 
Độ 
phân 
giải 
Cột/ 
hàng 
Độ che 
phủ 
mây 
1 1988 LT51250491988030BKT00 Landsat 5 TM 30/01/1988 30m 125/049 8% 
2 1998 LT51250491998073BKT00 Landsat 5 TM 14/03/1998 30m 125/049 9% 
3 2010 LT51250492010186BKT01 Landsat 5 TM 05/07/2010 30m 125/049 4% 
4 2017 LC81250492017221LGN00 Landsat 8 OLI 09/08/2017 30m 125/049 33,14% 
jos.hueuni.edu.vn Vol. 128, No. 4A, 2019 
23 
2.2 Phương pháp nghiên cứu 
Phương pháp điều tra cộng đồng và khảo sát thực địa 
Phương pháp phỏng vấn cấu trúc sử dụng bảng hỏi đã được sử dụng để phỏng vấn hộ 
gia đình tại các xã Đại Quang, Đại Đồng, Đại Lãnh và Đại Hưng nhằm tìm hiểu nguyên nhân 
và xu hướng biến động diện tích rừng, đây là các xã có diện tích rừng tự nhiên lớn của huyện 
Đại Lộc, tỉnh Quảng Nam. Kích thước mẫu phỏng vấn được tính theo công thức 1 [7]. 
 𝑛 =
𝑁
1+𝑁(𝑒2)
 [7] (1) 
trong đó: n là kích thước mẫu; e là sai số kỳ vọng có giá trị 10%; N là tổng thể. Trong đó tổng số 
hộ dân của huyện Đại Lộc năm 2016 là 40.733 hộ [6]; mức tin cậy được mặc định theo công thức 
Slovin là 95%. 
Tổng số 99 phiếu phỏng vấn đã được thực hiện với những hộ gia đình có thời gian sinh 
sống ở địa phương trên 10 năm và có sự am hiểu về tài nguyên rừng hay sinh kế liên quan đến 
rừng. Trong đó có 28 phiếu phỏng vấn đã được thực hiện ở xã Đại Quang, 29 phiếu ở xã Đại 
Đồng, 22 phiếu ở xã Đại Lãnh và 20 phiếu ở xã Đại Hưng. 
Điện thoại thông minh hệ điều hành Android có cài đặt phần mềm Geosurvey 2.3 và máy 
định vị toàn cầu (GPS – Garmin 62map, Hoa Kỳ) đã được sử dụng để xác định vị trí các điểm 
khảo sát. Máy ảnh Canon đã được sử dụng để chụp lại các lớp phủ rừng và các loại hình sử 
dụng đất trong suốt chuyến khảo sát vào tháng 2 năm 2018. Ngoài ra, địa hình huyện Đại Lộc, 
tỉnh Quảng Nam khá rộng lớn, phức tạp, nhiều đồi núi hiểm trở, hệ thống giao thông không thuận 
lợi nên gây khó khăn cho việc đi lại. Do đó, đề tài đã tiến hành khảo sát 88 điểm mẫu đặc trưng cho 
các lớp phủ trên toàn lãnh thổ nghiên cứu. Vị trí các điểm mẫu khảo sát thực địa được thể hiện ở 
hình 1. 
Hình 1. Tổ hợp màu 3-2-1 ảnh Landsat 8 OLI khu vực nghiên cứu chụp ngày 9/08/2017 và vị trí các điểm 
mẫu khảo sát thực địa. 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
24 
Phương pháp giải đoán và thành lập bản đồ biến động diện tích rừng 
a. Tiền xử lý ảnh vệ tinh: Ảnh viễn thám sau khi thu thập đã được xử lý qua các bước 
sau: Gộp kênh ảnh, cắt ảnh theo ranh giới hành chính huyện Đại Lộc. Quy trình này được thực 
hiện trên phần mềm ArcGIS 10.3, các kênh được gộp bao gồm: Red, Green, Blue và Near 
Infrared (cận hồng ngoại). 
b. Hệ thống phân loại: 160 điểm mẫu đã được sử dụng để tiến hành phân loại ảnh vệ tinh 
và đánh giá độ chính xác của kết quả phân loại. Trong đó, 88 điểm mẫu thu ngoài thực địa và 
72 điểm mẫu được chọn bổ sung trong phòng thí nghiệm từ dữ liệu ảnh viễn thám có độ phân 
giải không gian cao của ứng dụng Google Earth Pro. Hệ thống phân loại được thể hiện ở 
bảng 2. 
c. Bộ khóa giải đoán ảnh vệ tinh: Bộ khóa giải đoán ảnh vệ tinh cho khu vực nghiên cứu 
được thể hiện gồm 6 loại lớp phủ bao gồm: Rừng tự nhiên (RTN); Rừng trồng (RT); Khu dân cư 
(KDC); Mặt nước (MN); Đất nông nghiệp (ĐNN) và Đất khác (DK). Trong bộ khóa phân loại 
lớp phủ bề mặt, lớp Đất khác (ĐK) có thể hiểu cơ bản là các loại hình lớp phủ không thuộc các 
lớp rừng tự nhiên, rừng trồng, khu dân cư, mặt nước và đất nông nghiệp; có thể gồm: đất cơ sở 
tôn giáo, tín ngưỡng; đất phi nông nghiệp khác gồm đất làm nhà nghỉ, lán, trại cho người lao 
động trong cơ sở sản xuất và đất xây dựng công trình khác; hay nhóm đất chưa sử dụng gồm 
các loại đất chưa xác định mục đích sử dụng. 
d. Phương pháp phân loại dựa trên điểm ảnh (Pixel-based classification): Phương pháp 
phân loại dựa trên điểm ảnh là một trong những phương pháp được sử dụng phổ biến trong 
thời gian qua. Phương pháp này bao gồm phân loại có kiểm định (supervised classification) và 
phân loại không có kiểm định (unsupervised classification) dựa trên đặc trưng phổ của từng 
pixel đơn lẻ như đặc trưng về số lượng kênh phổ, đặc trưng về độ xám cực đại và cực tiểu, 
phương sai hay độ lệch chuẩn [8]. Một trong những phương pháp phân loại có kiểm định 
thường được sử dụng đó là phương pháp hàm xác suất cực đại (Maximum Likelihood). 
Bảng 2. Bảng thống kê các loại lớp phủ 
STT Loại lớp phủ Ký hiệu Số điểm mẫu 
1 Rừng tự nhiên RTN 36 
2 Rừng trồng RT 30 
3 Khu dân cư KDC 28 
4 Mặt nước MN 20 
5 Đất nông nghiệp NN 26 
6 Đất khác DK 20 
Tổng 160 
jos.hueuni.edu.vn Vol. 128, No. 4A, 2019 
25 
Phương pháp Maximum Likelihood coi số liệu thống kê của mỗi lớp trong mỗi kênh ảnh 
được phân tán một cách thông thường và phương pháp này có tính đến khả năng một pixel 
thuộc một lớp nhất định. Nếu như không chọn một ngưỡng xác suất thì sẽ phải phân loại tất cả 
các pixel, mỗi pixel được gán cho một lớp có độ xác suất cao nhất [4]. Phương pháp này xem xét 
phân phối các điểm ảnh có cùng độ xám được nhóm vào thành một lớp và được xác định theo 
công thức 2 [8]. 
 p(xi|wj) = 
1
√|𝐶𝑗|
2𝜋𝜌 exp(- 
1
2
x(xi – 𝜇j)T xCj-1 x(xi – 𝜇j)) (2) 
trong đó: Cj là ma trận hiệp phương sai của lớp wj với 𝜌; wj là vector trung bình của lớp wj; |x| 
là các yếu tố quyết định; p(xi|wj) là xác suất cùng tồn tại của sự kiện x và w; và (xi – 𝜇j) là vector 
chuyển. 
e. Phương pháp phân loại định hướng đối tượng (Object-based classification): Nguyên lý 
dựa vào mắt thường để có thể nhận biết được từ tập hợp các pixel để xây dựng các đối tượng 
chuyên đề, quá trình phân loại định hướng đối tượng có thể chia thành 2 bước chính: Phân 
mảnh ảnh và phân loại sau khi phân mảnh. Có hai phương pháp phân loại ở đây đó là phân 
loại dựa trên mẫu bằng thuật toán láng giềng gần nhất (nearest neighbor) và phân loại mờ 
(fuzzy) dựa trên các kỹ thuật chức năng của các thành phần. Trong phân loại dựa trên mẫu, các 
đối tượng phân loại thông qua sự giống nhau của các mẫu hoặc các mảnh ảnh, phương pháp 
này sử dụng thông tin phổ của các kênh phổ để xác định các lớp, ngoài ra còn sử dụng các 
thông tin hình dạng, kiến trúc, quan hệ của các đối tượng ảnh lân cận để chiết tách thông tin. 
Còn trong phân loại mờ, các mảnh ảnh được phân loại theo chức năng thành phần dựa trên tập 
mờ của đối tượng. Kỹ thuật này trợ giúp cấu trúc hệ thống trong phân cấp lớp. 
Trong cấu trúc phân cấp, mỗi đối tượng ảnh truy cập thông tin về các đối tượng ảnh lân cận, 
đối tượng ảnh cấp trên và cấp dưới trong mọi thời điểm bằng cách kết nối các đối tượng ảnh 
theo chiều dọc, truy cập vào quy mô và cấu trúc. Phân cấp các đối tượng ảnh cho phép đại diện 
thông tin ảnh tại các độ phân giải không gian đồng thời [9]. 
f. Thiết lập các tiêu chí tham gia phân loại định hướng đối tượng, gồm: 
i/ Chỉ số khác biệt thực vật (NDVI – Normalized Difference Vegetation Index) 
NDVI = (Nir – Red)/(Nir + Red) = (kênh 4 – kênh 3)/(kênh 4 + kênh 3) 
trong đó: Nir là kênh cận hồng ngoại; Red là kênh đỏ. 
ii/ Tỷ số tổng giá trị cấp độ xám (TRRI – Total Ratio Reflectance Index) 
TRRI = (kênh 1 + kênh 2 + kênh 3 ++ kênh n)/(n*255) 
iii/ Độ lệch chuẩn (Standard Deviation) sử dụng giá trị của 4 kênh ảnh 
iv/ Giá trị độ sáng trung bình (Brightness) 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
26 
Brightness = (kênh 1 + kênh 2 + kênh 3 + kênh4)/4 
v/ Giá trị độ sáng của mỗi kênh ảnh: kênh 1 đến kênh 4 
vi/ Thông số xuất hiện màu (Hue Saturation Intensity, RGB): Sử dụng kênh 1, 2 và 3 
vii/ Vector khác biệt cấp độ xám (GLDV Entropy) 
g. Phương pháp đánh giá độ chính xác kết quả giải đoán ảnh: Tiến hành đánh giá độ 
chính xác sau phân loại ảnh bằng cách sử dụng các điểm mẫu khảo sát thực địa và điểm mẫu 
chọn trong phòng. Tổng số điểm mẫu là 160 điểm, số điểm mẫu này đã được chia đôi một cách 
ngẫu nhiên. Trong đó, 80 điểm mẫu được sử dụng để giải đoán ảnh vệ tinh, 80 điểm mẫu còn 
lại được sử dụng để đánh giá độ chính xác. 
Sử dụng dữ liệu tham chiếu, hệ số Kappa (ҡ), độ chính xác của nhà sản xuất (producer 
accuracy), độ chính xác của người sử dụng (user accuracy) và độ chính xác tổng thể (overrall 
accuracy) để đánh giá độ chính xác của kết quả giải đoán ảnh [10]. Trong đó hệ số Kappa được 
tính theo công thức sau: 
 Ҡ = 
𝑁 ∑ 𝑥𝑖𝑖− ∑ (𝑥𝑖+ .𝑥+𝑖)
𝑟
𝑖=1
𝑟
𝑖=1
𝑁2− ∑ (𝑥𝑖+ .𝑥+𝑖)
𝑟
𝑖=1
 [10] 
trong đó, N: Tổng số pixel lấy mẫu; r: Số lớp đối tượng phân loại; xii: Số pixel đúng trong lớp 
thứ nhất; xi+: Tổng pixel lớp thứ i của mẫu; x+i: Tổng pixel của lớp thứ i sau phân loại; Giá trị của 
hệ số Kappa nằm giữa 0 và 1, thể hiện độ chính xác của kết quả phân loại được thể hiện ở 
bảng 3. 
h. Phương pháp phân tích và xử lý số liệu: Các thông tin, số liệu thô trong quá trình xây 
dựng bản đồ đã được xử lý, phân tích và tính toán bằng công cụ thống kê trong phần mềm 
ArcGIS và Microsoft Excel 2016 để tổng hợp và xuất ra biểu đồ. Quy trình các bước xây dựng 
bản đồ hiện trạng và biến động diện tích rừng được thể hiện ở hình 2. 
Bảng 3. Bảng đánh giá độ chính xác của kết quả phân loại theo hệ số Kappa theo Congalton (1991) [10]. 
Độ chính xác Giá trị hệ số Kappa 
Rất thấp < 0,2 
Thấp 0,2 ≤ ҡ < 0,4 
Trung bình 0,4 ≤ ҡ < 0,6 
Cao 0,6 ≤ ҡ <0,8 
Rất cao 0,8 ≤ ҡ < 1 
jos.hueuni.edu.vn Vol. 128, No. 4A, 2019 
27 
Hình 2. Quy trình các bước xây dựng bản đồ hiện trạng và biến động diện tích rừng 
3 Kết quả và thảo luận 
3.1 Đánh giá phương pháp phân loại dựa trên điểm ảnh và phương pháp phân loại định 
hướng đối tượng 
Nhằm so sánh độ chính xác sau phân loại của phương pháp phân loại dựa trên điểm ảnh 
và phương pháp phân loại định hướng đối tượng. Ảnh vệ tinh Landsat 8 chụp khu vực nghiên 
cứu huyện Đại Lộc, tỉnh Quảng Nam vào ngày 09/08/2017 với độ phân giải không gian là 30m, 
gồm 11 kênh phổ với các bước sóng khác nhau đã được sử dụng để đánh giá độ chính xác của 
hai phương pháp phân loại (Hình 3). 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
28 
Hình 3. Kết quả phân loại theo phương pháp phân loại dựa trên điểm ảnh a) và phương pháp phân loại 
định hướng đối tượng (b) 
Từ kết quả so sánh hai phương pháp phân loại ảnh cho thấy, phương pháp phân loại 
định hướng đối tượng cho độ chính xác tổng thể và hệ số Kappa cao hơn phương pháp phân 
loại dựa trên điểm ảnh. Do đó, đề tài nghiên cứu đã sử dụng phương pháp phân loại định 
hướng đối tượng để phân loại ảnh ở các năm 1988, 1998, 2010 và 2017. Kết quả phân loại được 
thể hiện ở Bảng 4. 
Bảng 4. Kết quả đánh giá độ chính xác của hai phương pháp phân loại. 
Phương pháp phân loại dựa trên điểm ảnh 
RTN RT KDC MN NN DK 
Độ chính xác nhà sản xuất (Producer accuracy, %) 99,5 99,2 89,1 93,7 61,7 94,2 
Độ chính xác người sử dụng (User accuracy, %) 99,7 66,2 92,7 84,9 87,5 87,0 
Độ chính xác tổng thể (Overall accuracy, %) 87,7 
Hệ số Kappa (Kappa coecifient) 0,84 
Phương pháp phân loại định hướng đối tượng 
RTN RT KDC MN NN DK 
Độ chính xác nhà sản xuất (Producer accuracy, %) 100,0 100,0 79,1 100,0 83,3 95,1 
Độ chính xác người sử dụng (User accuracy, %) 100,0 90,7 94,6 100,0 100,0 80,1 
Độ chính xác tổng thể (Overall accuracy, %) 98,0 
Hệ số Kappa (Kappa coecifient) 0,97 
jos.hueuni.edu.vn Vol. 128, No. 4A, 2019 
29 
3.2 Đánh giá độ chính xác của kết quả phân loại 
Để đánh giá độ chính xác của kết quả phân loại ảnh, nghiên cứu đã sử dụng 80 điểm 
mẫu, 80 điểm mẫu này không trùng vị trí với các điểm mẫu dùng để làm khóa phân loại, và 
được phân bố tương đối đều trên khu vực nghiên cứu. Kết quả phân loại qua các năm có độ 
chính xác tổng thể (overall accuracy) đều lớn hơn 90% và hệ số Kappa đều lớn hơn 0,87. Trong 
đó giá trị cao nhất là năm 2017 với độ chính xác tổng thể đạt 98% và hệ số Kappa là 0,97 (Bảng 
5). Kết quả đánh giá các năm 1988, 1998 và 2010 đều có độ chính xác tổng thể trên 90%; hệ số 
Kappa là 0,88 năm 1988 và 1998, năm 2010 là 0,89. Tuy nhiên, ở những năm này vẫn có sự nhầm 
lẫn từ DK sang KDC, từ NN sang RT tương đối phổ biến. 
Bảng 5. Độ chính xác tổng thể và hệ số Kappa của bản đồ các năm 1988, 1998, 2010 và 2017. 
Năm 1988 1998 2010 2017 
Độ chính xác tổng thể (Overall accuracy, %) 91,2 91,1 92,4 98,0 
Hệ số Kappa (Kappa coecifient) 0,88 0,88 0,89 0,97 
3.3 Sự biến động diện tích rừng huyện Đại Lộc và nguyên nhân 
Thành lập bản đồ biến động diện tích rừng huyện Đại Lộc 
Kết quả chồng xếp các lớp dữ liệu bản đồ và phân tích cho thấy diện tích rừng tự nhiên 
giảm đáng kể, năm 1988 và 1998 lần lượt là 30.278,1 ha (51,66%) và 15.603,3 ha (26,88%); năm 
1988 diện tích rừng trồng là 12.637,5 ha (21,77%), đến năm 1998 là 15.569,5 ha (26,82%) (Hình 4). 
Diện tích rừng tự nhiên chủ yếu tập trung ở khu vực có địa hình đồi núi cao; còn diện tích rừng 
trồng chủ yếu tập trung gần khu dân cư và hai bên bờ sông, nơi có hệ thống thủy văn và hệ 
thống giao thông thuận tiện cho việc đi lại. Nhìn chung, sự thay đổi các lớp phủ từ năm 1988 
đến 1998 đều theo xu hướng phục vụ phát triển kinh tế xã hội của địa phương. 
Giai đoạn 1998-2010, diện tích rừng tự nhiên đã tăng lên từ 15.603,3 ha (29,10%) lên 
18.742,3 ha (32,28%), tăng 3.139 ha (5,41%), nguyên nhân có thể do trong giai đoạn này rừng tự 
nhiên được phục hồi và các chính sách quản lý và bảo vệ rừng được thực hiện tốt. Trong khi đó 
diện tích rừng trồng lại giảm đi 1.822,8 ha (-3,14%) so với ban đầu là 15.569,5 ha (40,04%), cùng 
với rừng trồng thì diện tích lớp khu dân cư và đất khác cũng giảm theo, lớp mặt nước tăng lên 
(Hình 5). 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
30 
Hình 4. Bản đồ biến động diện tích rừng giai đoạn 1988 – 1998. 
Hình 5. Bản đồ biến động diện tích rừng giai đoạn 1998 – 2010 
jos.hueuni.edu.vn Vol. 128, No. 4A, 2019 
31 
Giai đoạn 2010-2017, diện tích rừng tự nhiên năm 2010 khoảng 18.742,3 ha (32,28%) giảm 
xuống còn 16.859 ha (29,10%) vào năm 2017. Trong khi đó diện tích rừng trồng tăng lên mạnh, 
năm 2010 diện tích rừng trồng chỉ 13.746,7 ha (23,68%) đã tăng lên đến 23.245,9 ha (40,04%) vào 
năm 2017 (Hình 6). Tương tự như kết quả ở các năm 1988 và 1998 thì diện tích rừng tự nhiên 
năm 2010 và 2017 cũng chủ yếu tập trung ở những vùng xa khu dân cư và hệ thống thủy văn, 
trong khi đó diện tích rừng trồng tập trung ở gần khu dân cư và chạy dọc theo sông, hồ (Hình 
6-7). 
Hình 6. Bản đồ biến động diện tích rừng giai đoạn 2010 – 2017 
Hình 7. Bản đồ biến động diện tích rừng giai đoạn 1988 – 2017. 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
32 
Từ bảng 6 cho thấy, trong giai đoạn 1988 – 2017, diện tích rừng tự nhiên không biến 
động là 54,64%, phần rừng tự nhiên chuyển đổi qua các lớp phủ khác chiếm 45,36%; diện tích 
rừng trồng không biến động là 59,58%, phần rừng trồng chuyển đổi qua các lớp phủ khác là 
48,42% (Bảng 6). 
Bảng 6. Ma trận tỷ lệ chuyển đổi giữa các lớp phủ giai đoạn 1988 – 2017 (đơn vị: %) 
Lớp RTN RT KDC MN NN DK 
RTN 54,64 2,51 0 0 0 0,08 
RT 37,44 59,58 11,45 15,13 36,91 24,10 
KDC 2,01 8,54 29,00 22,79 21,63 21,07 
MN 0,16 4,31 9,40 32,97 0,83 6,07 
NN 2,21 5,51 8,30 1,54 22,23 11,58 
DK 3,53 19,56 41,85 27,57 18,40 37,09 
Bước đầu tìm hiểu nguyên nhân biến động diện tích rừng huyện Đại Lộc 
Nghiên cứu đã tiến hành phỏng vấn 99 hộ dân ở 4 xã có diện tích rừng tự nhiên lớn của 
huyện Đại Lộc bao gồm: Đại Hưng, Đại Lãnh, Đại Đồng và Đại Quang. Đối tượng được phỏng 
vấn có độ tuổi từ 28 đến 83 (trung bình: 51 tuổi), nghề nghiệp hầu hết là làm nông, chỉ có một 
vài người là bán hàng, nội trợ và công nhân. Đây là những người dân đại diện cho những hộ 
gia đình đã có thời gian sinh sống ở huyện Đại Lộc trên 10 năm, do vậy ít nhiều họ cũng đã 
chứng kiến được sự thay đổi về diện tích rừng địa bàn nghiên cứu. 
Qua phân tích kết quả phỏng vấn của người dân, bước đầu đã xác định được một số 
nguyên nhân gây suy thoái chất lượng và biến động diện tích rừng gồm: đốt nương làm rẫy, 
khai thác quá mức, xây dựng công trình, và chuyển đổi mục đích sử dụng đất. Trong đó 
nguyên nhân “khai thác quá mức” chiếm tỷ lệ cao nhất là 38,39%, tiếp đó là “chuyển đổi mục 
đích sử dụng đất” chiếm 28,57%, “xây dựng công trình” chiếm 18,75%, và thấp nhất là nguyên 
nhân “đốt nương làm rẫy” chiếm 14,29% (Hình 8). 
jos.hueuni.edu.vn Vol. 128, No. 4A, 2019 
33 
Hình 8. Biểu đồ thể hiện nguyên nhân suy thoái chất lượng và biến động diện tích rừng 
4 Kết luận 
Nghiên cứu đã đánh giá được phương pháp dựa trên điểm ảnh và phương pháp định 
hướng đối tượng trong phân loại ảnh vệ tinh. Kết quả cho thấy phương pháp định hướng đối 
tượng có nhiều ưu điểm và cho độ chính xác sau phân loại tốt hơn so với phương pháp dựa 
trên điểm ảnh. Qua đó cũng cho thấy phương pháp phân loại định hướng đối tượng sẽ phát 
huy hết ưu điểm nếu thực hiện trên ảnh vệ tinh có độ phân giải không gian cao. 
Độ chính xác của kết quả phân loại ở mức cao và đáng tin cậy được thể hiện qua độ chính 
xác tổng thể (overall accuracy) đều trên 90% và hệ số Kappa từ 0,88 – 0,97. Trong đó độ chính 
xác tổng thể sau phân loại của năm 2017 là lớn nhất với độ chính xác tổng thể (overall accuracy) 
đạt 98% và hệ số Kappa là 0,97. Qua đó cũng cho thấy chất lượng ảnh có ảnh hưởng đến kết 
quả phân loại. 
Diện tích rừng tự nhiên huyện Đại Lộc, tỉnh Quảng Nam trong giai đoạn 1988–2017 biến 
động mạnh, năm 1988 diện tích rừng tự nhiên là 30.278,1 ha (52,16%), đến năm 2017 đã mất 
khoảng 13.382,8 ha (-23,05%) xuống còn 16.895,3 ha (29,10%). 
Qua quá trình điều tra phỏng vấn người dân, nghiên cứu đã bước đầu xác định được một 
số nguyên nhân gây suy giảm diện tích rừng. Trong đó do khai thác quá mức và chuyển đổi 
mục đích sử dụng đất là những nguyên nhân phổ biến, ngoài ra còn do xây dựng các công trình 
và đốt rừng làm rẫy. 
Tài liệu tham khảo 
1. Trần Thị Thơm, Phạm Thanh Quế (2014), Sử dụng tư liệu viễn thám và GIS thành lập bản đồ lớp phủ 
rừng tỷ lệ 1/10.000. Tạp chí Khoa học và Công nghệ Lâm nghiệp, 4, 161-168. 
Nguyễn Hữu Hải và CS. Vol. 128, No. 4A, 2019 
34 
2. Hansen MC, Roy DP, Lindquist E, Adusei B, Justice CO, Altstatt A (2008), A method for integrating 
MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin. 
Remote Sensing of Environment, 112(5), 2495-2513. 
3. Rawat JS, Manish K (2015), Monitoring land use/cover change using remote sensing and GIS 
techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian 
Journal of Remote Sensing and Space Science, 18(1), 77-84. 
4. Đoàn Duy Hiếu, Nguyễn Thám (2017), Đánh giá biến động rừng huyện Ia Pa, tỉnh Gia Lai trên tư liệu 
viễn thám đa thời gian và GIS. Tạp chí Khoa học và Giáo dục, Trường Đại học Sư phạm Huế, 02(42), 116-
126. 
5. Nguyễn Hải Hòa, Nguyễn Văn Quốc (2017), Sử dụng ảnh viễn thám Landsat và GIS xây dựng bản đồ 
biến động diện tích rừng tại vùng đệm Vườn Quốc Gia Xuân Sơn. Tạp chí Khoa học và Công nghệ Lâm 
nghiệp, 3, 46-56. 
6. Chi cục thống kê huyện Đại Lộc (2016), Niên giám thống kê. Cục thống kê Quảng Nam. 
7. Rosner B (2011), Fundamentals of Biostatistics (The 7th edition). Boston, MA: Brooks/Cole. 
8. Trịnh Hoài Thu, Lê Thị Thu Hà, Phạm Thị Làn (2012), So sánh phương pháp phân loại dựa vào điểm 
ảnh và phân loại định hướng đối tượng chiết xuất thông tin lớp phủ bề mặt từ ảnh độ phân giải cao. 
Tạp chí Khoa học Kỹ thuật mỏ địa chất, 39(07), 59 - 64. 
9. Jyothi BN, Babu GR, Krishna IVM (2008), Object oriented and multi-scale image analysis: strengths, 
weaknesses, opportunities, and threats – a review. Journal of Computer Science, 4(9), 706-712. 
10. Congalton RG (1991), A review of assessing the accuracy of classifications of remotely sensed data. 
Remote Sensing of Environment, 37(1), 35-46. 
ASSESSMENT OF FOREST COVER CHANGES OF DAI LOC 
DISTRICT, QUANG NAM PROVINCE DURING THE PERIOD 
1988–2017 USING GIS AND REMOTE SENSING TECHNIQUES 
Nguyen Huu Hai, Hoang Cong Tin*, Ngo Huu Binh 
Faculty of Environmental Science, University of Sciences, Hue University 
Abstract. Dai Loc is one of district belonging to Vu Gia-Thu Bon river basin, which have 
large forest cover area of Quang Nam province in particular and central Vietnam in general. 
However, after 30 years of economic development (1988–2017), forest cover percentage have 
been rapidly changed due to over exploiting, land use–land changes as well as 
infrastructure development. Landsat-5 TM, 8 OLI satellite images data and the forest cover 
map in 2016 were employed in this study. Assessment results acquired high overall 
accuracy, over 90%, Kappa coefficient varied from 0.88 to 0.97. The area of natural forest was 
30,278.1 ha (52.16%) in 1988 and decreased 16,895.3 ha in 2017 (29.10%). While, the planting 
forest area was significant increasing (reached 9,107.4 ha) in compare with 1988 (14,138.5 
ha). The outcome of this study would essential contribute for monitoring program and 
sustainable management of Dai Loc district’s forest resource. 
Keywords: Dai Loc district, forest cover changes, satellite images data, Vu Gia–Thu Bon 
river basin 

File đính kèm:

  • pdfung_dung_vien_tham_va_gis_trong_danh_gia_bien_dong_dien_tich.pdf