Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh
Tóm tắt - Bài toán bất đẳng thức tựa biến phân
véc tơ tham số hỗn hợp mạnh bao gồm nhiều
vấn đề như bài toán bất đẳng thức biến phân,
bài toán điểm bất động, bài toán điểm trùng lặp,
bài toán bù nhau, v.v. Có nhiều tác giả đang
nghiên cứu tìm hàm gap cho bài toán bất đẳng
thức biến phân véc tơ. Bài toán này đóng vai trò
quan trọng trong nhiều lĩnh vực toán ứng dụng,
đặc biệt là lý thuyết tối ưu. Trong bài báo này,
chúng tôi nghiên cứu hàm gap tham số với sự hỗ
trợ của hàm phi tuyến vô hướng cho bài toán
bất đẳng thức tựa biến phân véc tơ tham số hỗn
hợp mạnh (viết tắt (SQVIP)) trong không gian
tô pô véc tơ Hausdorff. (SQVIP
Bạn đang xem tài liệu "Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh
126 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 Abstract— The parametric mixed strong vector quasivariational inequality problem contains many problems such as, variational inequality problems, fixed point problems, coincidence point problems, complementary problems etc. There are many authors who have been studied the gap functions for vector variational inequality problem. This problem plays an important role in many fields of applied mathematics, especially theory of optimization. In this paper, we study a parametric gap function without the help of the nonlinear scalarization function for a parametric mixed strong vector quasivariational inequality problem (in short, (SQVIP)) in Hausdorff topological vector spaces. (SQVIP) Find ),( xKx and ),( xTz such that ),,(,),,(>,< xKyRxyfxyz n where we denote the nonnegative of nR by }.,1,2,=0,|),,,(={= 21 nitRttttR i nT n n Moreover, we also discuss the lower semicontinuity, upper semicontinuity and the continuity for the parametric gap function for this problem. To the best of our knowledge, until now there have not been any paper devoted to the lower semicontinuity, continuity of the gap function without the help of the nonlinear scalarization function for a parametric mixed strong vector quasivariational inequality problem in Hausdorff topological vector spaces. Hence the results presented in this paper (Theorem 1.3 and Theorem 1.4) are new and different in comparison with some main results in the literature. Manuscript Received on July 13th, 2016. Manuscript Revised December 06th, 2016. This research is funded by Ho Chi Minh City University of Technology - VNU-HCM under grant number T-KHUD-2016- 107. Le Xuan Dai is with Department of Applied Mathematics, Ho Chi Minh City University of Technology - VNU-HCM, Vietnam National University - Ho Chi Minh City, Vietnam, Email: ytkadai@hcmut.edu.vn Nguyen Van Hung is with Department of Mathematics, Dong Thap University, Cao Lanh City, Vietnam, Email: nvhung@dthu.edu.vn Phan Thanh Kieu is with Department of Mathematics, Dong Thap University, Cao Lanh City, Vietnam, Email: ptkieu@dthu.edu.vn Index Terms—Vector quasivariational inequality problem; parametric gap function; lower semicontinuity; upper semicontinuity, continuity. 1 INTRODUCTION et X and be Hausdorff topological vector spaces. Let ),( nRXL be the space of all linear continuous operators from X to .nR ,2: XXK ),(2: nRXLXT are set-valued mappings and let nRXf : be continuous single-valued mappings. For consider the following parametric mixed strong vector quasivariational inequality problem (in short, (SQVIP)). (SQVIP) Find ),( xKx and ),( xTz such that ),,(,),,(>,< xKyRxyfxyz n where we denote the nonnegative of nR by }.,1,2,=0,|),,,(={= 21 nitRttttR i nT n n Here the symbol T denotes the transpose. We also denote }.,1,2,=0,>|),,,(={= 21 nitRttttintR i nT n n For each we let )},(|{:=)( xKxXxE and X2: be set-valued mapping such that )( is the solution set of (SQVIP). Throughout the paper, we always assume that )( for each in the neighborhood .0 The parametric mixed strong vector quasivariational inequality problem contains many problems such as, variational nequality problems, fixed point problems, coincidence point problems, complementarity problems etc,. There are many authors have been studied the gap functions for vector variational inequality problem, see ([2]-[6], [8]-[10]) and the references therein. The structure of our paper is as follows. In Section 1 of this article, we introduce the model vector quasivariational inequality problem and recall definitions for later uses. In Section 2, we establish the lower semicontinuity, the upper semicontinuity and the continuity for the gap The GAP function of a parametric mixed strong vector quasivariational inequality problem Le Xuan Dai, Nguyen Van Hung, Phan Thanh Kieu L TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017 127 function of parametric mixed strong vector quasivariational inequality problem. A. Preliminaries Next, we recall some basic definitions and their some properties. Definition 1.1 (See [1], [7]) Let X and Z be Hausdorff topological vector spaces and ZXF 2: be a multifunction. i) F is said to be lower semicontinuous (lsc) at 0x if UxF )( 0 for some open set ZU implies the existence of a neighborhood N of 0x such that, for all .)(, UxFNx An equivalent formulation is that: F is lsc at 0x if ,0xx ),( 00 xFz ),( xFz .0zz F is said to be lower semicontinuous in X if it is lower semicontinuous at each .0 Xx ii) F is said to be upper semicontinuous (usc) at 0x if for each open set ),( 0xFU there is a neighborhood N of 0x such that ).(NFU F is said to be upper semicontinuous in X if it is upper semicontinuous at each .0 Xx iii) F is said to be continuous at 0x if it is both lsc and usc at .0x F is said to be continuous at 0x if it is continuous at each .0 Xx iv) F is said to be closed at Xx 0 if and only if ,0xxn 0yyn such that ),( nn xFy we have ).( 00 xFy F is said to be closed in X if it is closed at each .0 Xx Lemma 1.1 (See [1], [7]) If F has compact values, then F is usc at 0x if and only if, for each net Xx }{ which converges to 0x and for each net ),(}{ xFy there are )(xFy and a subnet }{ y of }{ y such that .yy B. Main Results In this section, we introduce the parametric gap functions for parametric mixed strong vector quasivariational inequality problem, then we study some properties of this gap function. Definition 1.2 A function RXh : is said to be a parametric gap function of (SQVIP) if it satisfies the following properties [i)] i) 0),( xh for all ).(Ex i) 0=),( 00 xh if and only if ).( 00 x Now we suppose that ),( xK and ),( xT are compact sets for any .),( Xx We define function RXh : as follows i xKyxTz xyfyxzxh )),,(>,(<maxmin=),( ),(),( (1) where ixyfyxz )),,(>,(< is the i th component of ),,,(>,< xyfyxz .,1,2,= ni Since ),( xK and ),( xT are compact sets, ),( xh is well-defined. In the following, we will always assume that 0=),,( xxf for all ).(Ex Theorem 1.2 The function ),( xh defined by (1) is a parametric gap function for the (SQVIP). Proof. We define a function nn RRXLXh ),(:1 as follows ,)),,(>,(<maxmax=),( 1),( 1 i nixKy xyfyxzzxh where ).,(),( xTzEx i) It is easy to see that 0.),(1 zxh Suppose to the contrary that there exists )(0 Ex and ),( 00 xTz such that 0,<),( 001 zxh then i nixKy xyfyxzzxh )),,(>,(0 00 1),0( 001 ),,(,)),,(>,(<max 000 1 xKyxyfyxz i ni which is impossible when .= 0xy Hence, 0,)),,(>,(<maxmax=),( 1),( 1 i nixKy xyfyxzzxh where ).,(),( xTzEx Thus, since ),( xTz is arbitrary, we have 0.)),,(>,(<maxmin=),( ),(),( i xKyxTz xyfyxzxh ii) By definition, 0=),( 00 xh if and only if there exists ),( 000 xTz such that 0,=),( 001 zxh i.e., 0,=)),,(>,(<maxmax 0000 1)0,0( i nixKy xyfyxz for )( 00 Ex if and only if, for any ),,( 00 xKy 0,)),,(>,(<max 0000 1 i ni xyfyxz namely, there is an index ,1 0 ni such that 0,)),,(>,(< 00000 ixyfyxz which is equivalent to ),,(,),,(>,< 000000 xKyRxyfyxz n that is, ).( 00 x Remark 1.1 As far as we know, there have not been any works on parametric gap functions for mixed strong vector quasiequilibrium problems, and hence our the parametric gap functions is new and cannot compare with the existing ones in the literature. 128 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 Example 1.1 Let [0,1],=2,=,= nRX [0,1],=),( xK 422,3 2 1 =),( xxxT and 0.=),,( xyf Now we consider the problem (QVIP), finding ),( xKx and ),( xTz such that ))((3),( 2 1 =),,(>,< 422 xyxxxyxyfxyz .2 R It follows from a direct computation {0}=)( for all [0,1]. Now we show that (.,.)h is a parametric gap function of (SQVIP). Indeed, taking ,(1,1)= nintRe we have i nixKyxTz xyfyxzxh )),,(>,(<maxmaxmin=),( 1),(),( (0,1], 0=0, =)))(((3max= 532 422 ),( xifxx xif yxxx xKy Hence, (.,.)h is a parametric gap function of (SQVIP). The following Theorem 1.3 gives sufficient condition for the parametric gap function (.,.)h is continuous in . X Theorem 1.3 Consider (SQVIP). If the following conditions hold: i) (.,.)K is continuous with compact values in ; X ii) (.,.)T is upper semicontinuous with compact values in . X Then (.,.)h is lower semicontinuous in . X Proof. First, we prove that (.,.)h is lower semicontinuous in . X Indeed, we let Ra and suppose that Xx )},{( satisfying ,),( axh and ),(),( 00 xx as . It follows that =),( xh .)),,(>,(<maxmaxmin= 1),(),( axyfyxz i nixKyxTz We define the function RRXLXh n ),(:0 by ).()),,(>,(<maxmax=),,( 1),( 0 Exyfyxzzxh i nixKy Since g and f are continuous, we have ixyfyxz )),,(>,(< is continuous, and since (.,.)K is continuous with compact values in . X Thus, by Proposition 19 in Section 3 of Chapter 1 [1] we can deduce that ),,(0 zxh is continuous. By the compactness of ),,( xT there exists ),( xTz such that =),( xh i nixKyxTz xyfyxz )),,(>,(<maxmaxmin= 1),(),( =),,(= 0 zxh .)),,(>,(<maxmax= 1),( axyfyxz i nixKy Since (.,.)K is lower semicontinuous in , X for any ),,( 000 xKy there exists ),( xKy such that .0yy For ),,( xKy we have .)),,(>,(<max 1 axyfyxz i ni (2) Since (.,.)T is upper semicontinuous with compact values in , X there exists ),( 000 xTz such that 0zz (taking a subnet }{ z of }{ z if necessary) as . Since i ni xyfyxz )),,(>,(<max 1 is continuous. Taking the limit in (2), we have .)),,(>,(<max 000000 1 axyfyxz i ni (3) Since ),( 00 xKy is arbitrary, it follows from (3) that =),,( 0000 zxh .)),,(>,(<maxmax= 0000 1)0,0( axyfyxz i nixKy and so, for any ),,( 00 xTz we have =),( 00 xh .)),,(>,(<maxmaxmin= 000 1)0,0()0,0( axyfyxz i nixKyxTz This proves that, for ,Ra the level set }),(|),{( axhXx is closed. Hence, (.,.)h is lower semicontinuous in . X Theorem 1.4 Consider (SQVIP). If the following conditions hold: [i)] 1. (.,.)K is continuous with compact values in ; X 2. (.,.)T is continuous with compact values in . X Then (.,.)h is continuous in . X Proof. Now, we need to prove that (.,.)h is upper semicontinuous in . X Indeed, let Ra and suppose that Xx )},{( satisfying ,),( axh for all and ),(),( 00 xx as , then =),( xh axyfyxz i nixKyxTz )),,(>,(<maxmaxmin= 1),(),( and so TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017 129 )(,)),,(>,(<maxmax , 1),( xTzaxyfyxz i nixKy (4) Since (.,.)T is lower semicontinuous with compact values in , X for any ),,( 000 xTz there exists ),( xTz such that 0zz as . Since ),,( xTz it follows (4) that ,)),,(>,(<maxmax 1),( axyfyxz i nixKy (5) Since f and g are continuous, so i ni xyfyxz )),,(>,(<max 1 is continuous. By the compactness of (.,.)K there exists ),( xKy such that .)),,(>,(<max 1 axyfyxz i ni (6) Since (.,.)K is upper semicontinuous with compact values, there exists ),( 000 xKy such that 0yy (taking a subnet }{ y of }{ y if necessary) as . Since i ni xyfyxz )),,(>,(<max 1 is continuous. Taking limit in (6), we have .)),,(>,(<max 000000 1 axyfyxz i ni (7) For any ),,( 00 xKy we have .)),,(>,(<maxmax 0000 1)0,0( axyfyxz i nixKy (8) Since ),( 00 xTz is arbitrary, it follows from (8) that =),( 00 xh f axyfyxz i nixKyxTz )),,(>,(<maxmaxmin= 000 1)0,0()0,0( This proves that, for ,Ra the level set }),(|),{( axhXx is closed. Hence, (.,.)h is upper semincontinuous in . X 2 CONCLUSION To the best of our knowledge, until now there have not been any paper devoted to the lower semicontinuity, continuity of the gap function without the help of the nonlinear scalarization function for a parametric mixed strong vector quasivariational inequality problem in Hausdorff topological vector spaces. Hence our results, Theorem 1.3 and Theorem 1.4 are new. REFERENCES [1] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, 1em plus 0.5em minus 0.4em John Wiley and Sons, New York, 1984. [2] D. Aussel D and J. Dutta, On gap functions for multivalued stampacchia variational inequalities, 1em plus 0.5em minus 0.4em J Optim Theory Appl. 149, pp. 513-527, 2011. [3] D. Aussel., R. Correa and M. Marechal, Gap functions for quasivariational inequalities and generalized Nash equilibrium problems, 1em plus 0.5em minus 0.4em J. Optim Theory Appl. 151, pp. 474-488, 2011. [4] C. S. Lalitha and G. Bhatia, Stability of parametric quasivariational inequality of the Minty type, 1em plus 0.5em minus 0.4em J. Optim. Theory. Appl. 148, pp. 281-300, 2011. [5] J. Li and Z. Q. He, Gap functions and existence of solutions to generalized vector variational inequalities, 1em plus 0.5em minus 0.4em Appl. Math. Lett., 18, pp. 989- 1000, 2005. [6] S. J. Li, G. Y. Chen, Stability of weak vector variational inequality problems, 1em plus 0.5em minus 0.4em Nonlinear Anal. TMA., 70, pp. 1528-1535, 2009. [7] D. T. Luc, Theory of Vector Optimization, 1em plus 0.5em minus 0.4em Lecture Notes in Economics and Mathematical Systems, Springer-Verlag Berlin Heidelberg, 1989. [8] G. Mastroeni, Gap functions for equilibrium problems, 1em plus 0.5em minus 0.4em J. Global Optim., 27, pp. 411-426, 2003. [9] S. K. Mishra and S. Y. Wang and K. K. Lai, Gap function for set-valued vector variational- like, 1em plus 0.5em minus 0.4em J. Optim. Theory Appl., 138, pp. 77–84, 2008. [10] X. Q. Yang and J. C. Yao, Gap Functions and Existence of Solutions to Set-Valued Vector Variational Inequalities, 1em plus 0.5em minus 0.4em J Optim Theory Appl. 115, pp. 407–417, 2002. 130 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017 Tóm tắt - Bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh bao gồm nhiều vấn đề như bài toán bất đẳng thức biến phân, bài toán điểm bất động, bài toán điểm trùng lặp, bài toán bù nhau, v.v. Có nhiều tác giả đang nghiên cứu tìm hàm gap cho bài toán bất đẳng thức biến phân véc tơ. Bài toán này đóng vai trò quan trọng trong nhiều lĩnh vực toán ứng dụng, đặc biệt là lý thuyết tối ưu. Trong bài báo này, chúng tôi nghiên cứu hàm gap tham số với sự hỗ trợ của hàm phi tuyến vô hướng cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh (viết tắt (SQVIP)) trong không gian tô pô véc tơ Hausdorff. (SQVIP) Tìm ),( xKx và ),( xTz sao cho ),,(,),,(>,< xKyRxyfxyz n với }.,1,2,=0,|),,,(={= 21 nitRttttR i nT n n Ngoài ra, chúng tôi cũng thảo luận tính nửa liên tục dưới, nửa liên tục trên và tính liên tục của hàm gap tham số cho bài toán này. Theo những hiểu biết của mình, chúng tôi cho rằng tới nay chưa từng có bài báo nào nghiên cứu tính nửa liên tục dưới, tính liên tục của hàm gap mà không cần sự trợ giúp của hàm phi tuyến vô hướng đối với bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh trong không gian tô pô véc tơ Hausdorff. Do đó những kết quả được trình bày trong bài báo này (Định lý 1.3 và Định lý 1.4) là mới và khác biệt so với một số kết quả chính trong tài liệu tham khảo Từ khóa - Bài toán bất đẳng thức tựa biến phân véctơ; hàm gap tham số; tính nửa liên tục dưới; tính nửa liên tục trên, tính liên tục. Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh Lê Xuân Đại, Nguyễn Văn Hưng, Phan Thanh Kiều
File đính kèm:
- ham_gap_cho_bai_toan_bat_dang_thuc_tua_bien_phan_vec_to_tham.pdf