Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh
Tóm tắt - Bài toán bất đẳng thức tựa biến phân
véc tơ tham số hỗn hợp mạnh bao gồm nhiều
vấn đề như bài toán bất đẳng thức biến phân,
bài toán điểm bất động, bài toán điểm trùng lặp,
bài toán bù nhau, v.v. Có nhiều tác giả đang
nghiên cứu tìm hàm gap cho bài toán bất đẳng
thức biến phân véc tơ. Bài toán này đóng vai trò
quan trọng trong nhiều lĩnh vực toán ứng dụng,
đặc biệt là lý thuyết tối ưu. Trong bài báo này,
chúng tôi nghiên cứu hàm gap tham số với sự hỗ
trợ của hàm phi tuyến vô hướng cho bài toán
bất đẳng thức tựa biến phân véc tơ tham số hỗn
hợp mạnh (viết tắt (SQVIP)) trong không gian
tô pô véc tơ Hausdorff. (SQVIP
Bạn đang xem tài liệu "Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Hàm GAP cho bài toán bất đẳng thức tựa biến phân véc tơ tham số hỗn hợp mạnh
126 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017
Abstract— The parametric mixed strong vector
quasivariational inequality problem contains many
problems such as, variational inequality problems,
fixed point problems, coincidence point problems,
complementary problems etc. There are many
authors who have been studied the gap functions for
vector variational inequality problem. This problem
plays an important role in many fields of applied
mathematics, especially theory of optimization. In this
paper, we study a parametric gap function without
the help of the nonlinear scalarization function for a
parametric mixed strong vector quasivariational
inequality problem (in short, (SQVIP)) in Hausdorff
topological vector spaces. (SQVIP) Find
),( xKx and ),( xTz such that
),,(,),,(>,< xKyRxyfxyz n
where we denote the nonnegative of
nR by
}.,1,2,=0,|),,,(={= 21 nitRttttR i
nT
n
n
Moreover, we also discuss the lower
semicontinuity, upper semicontinuity and the
continuity for the parametric gap function for this
problem. To the best of our knowledge, until now
there have not been any paper devoted to the lower
semicontinuity, continuity of the gap function without
the help of the nonlinear scalarization function for a
parametric mixed strong vector quasivariational
inequality problem in Hausdorff topological vector
spaces. Hence the results presented in this paper
(Theorem 1.3 and Theorem 1.4) are new and different
in comparison with some main results in the
literature.
Manuscript Received on July 13th, 2016. Manuscript Revised
December 06th, 2016.
This research is funded by Ho Chi Minh City University of
Technology - VNU-HCM under grant number T-KHUD-2016-
107.
Le Xuan Dai is with Department of Applied Mathematics,
Ho Chi Minh City University of Technology - VNU-HCM,
Vietnam National University - Ho Chi Minh City, Vietnam,
Email: [email protected]
Nguyen Van Hung is with Department of Mathematics, Dong
Thap University, Cao Lanh City, Vietnam, Email:
[email protected]
Phan Thanh Kieu is with Department of Mathematics, Dong
Thap University, Cao Lanh City, Vietnam, Email:
[email protected]
Index Terms—Vector quasivariational inequality
problem; parametric gap function; lower
semicontinuity; upper semicontinuity, continuity.
1 INTRODUCTION
et X and be Hausdorff topological vector
spaces. Let ),( nRXL be the space of all linear
continuous operators from X to .nR ,2: XXK
),(2:
nRXLXT are set-valued mappings and let
nRXf : be continuous single-valued
mappings. For consider the following
parametric mixed strong vector quasivariational
inequality problem (in short, (SQVIP)).
(SQVIP) Find ),( xKx and ),( xTz such that
),,(,),,(>,< xKyRxyfxyz n
where we denote the nonnegative of nR by
}.,1,2,=0,|),,,(={= 21 nitRttttR i
nT
n
n
Here the symbol T denotes the transpose. We
also denote
}.,1,2,=0,>|),,,(={= 21 nitRttttintR i
nT
n
n
For each we let )},(|{:=)( xKxXxE
and X2: be set-valued mapping such that
)( is the solution set of (SQVIP). Throughout
the paper, we always assume that )( for each
in the neighborhood .0
The parametric mixed strong vector
quasivariational inequality problem contains many
problems such as, variational nequality problems,
fixed point problems, coincidence point problems,
complementarity problems etc,. There are many
authors have been studied the gap functions for
vector variational inequality problem, see ([2]-[6],
[8]-[10]) and the references therein.
The structure of our paper is as follows. In
Section 1 of this article, we introduce the model
vector quasivariational inequality problem and
recall definitions for later uses. In Section 2, we
establish the lower semicontinuity, the upper
semicontinuity and the continuity for the gap
The GAP function of a parametric mixed strong
vector quasivariational inequality problem
Le Xuan Dai, Nguyen Van Hung, Phan Thanh Kieu
L
TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017
127
function of parametric mixed strong vector
quasivariational inequality problem.
A. Preliminaries
Next, we recall some basic definitions and their
some properties.
Definition 1.1 (See [1], [7]) Let X and Z be
Hausdorff topological vector spaces and ZXF 2:
be a multifunction.
i) F is said to be lower semicontinuous (lsc) at
0x if UxF )( 0 for some open set ZU
implies the existence of a neighborhood N of
0x such that, for all .)(, UxFNx An
equivalent formulation is that: F is lsc at 0x
if ,0xx ),( 00 xFz ),( xFz .0zz
F is said to be lower semicontinuous in X if
it is lower semicontinuous at each .0 Xx
ii) F is said to be upper semicontinuous (usc) at
0x if for each open set ),( 0xFU there is a
neighborhood N of 0x such that ).(NFU F
is said to be upper semicontinuous in X if it
is upper semicontinuous at each .0 Xx
iii) F is said to be continuous at 0x if it is both
lsc and usc at .0x F is said to be continuous
at 0x if it is continuous at each .0 Xx
iv) F is said to be closed at Xx 0 if and only if
,0xxn 0yyn such that ),( nn xFy we
have ).( 00 xFy F is said to be closed in X if
it is closed at each .0 Xx
Lemma 1.1 (See [1], [7]) If F has compact
values, then F is usc at 0x if and only if, for each
net Xx }{ which converges to 0x and for each
net ),(}{ xFy there are )(xFy and a subnet
}{ y of }{ y such that .yy
B. Main Results
In this section, we introduce the parametric gap
functions for parametric mixed strong vector
quasivariational inequality problem, then we study
some properties of this gap function.
Definition 1.2 A function RXh : is said to
be a parametric gap function of (SQVIP) if it
satisfies the following properties [i)]
i) 0),( xh for all ).(Ex
i) 0=),( 00 xh if and only if ).( 00 x
Now we suppose that ),( xK and ),( xT are
compact sets for any .),( Xx We define
function RXh : as follows
i
xKyxTz
xyfyxzxh )),,(>,(<maxmin=),(
),(),(
(1)
where ixyfyxz )),,(>,(< is the i th
component of ),,,(>,< xyfyxz .,1,2,= ni
Since ),( xK and ),( xT are compact sets,
),( xh is well-defined.
In the following, we will always assume that
0=),,( xxf for all ).(Ex
Theorem 1.2 The function ),( xh defined by (1)
is a parametric gap function for the (SQVIP).
Proof. We define a function
nn RRXLXh ),(:1 as follows
,)),,(>,(<maxmax=),(
1),(
1 i
nixKy
xyfyxzzxh
where ).,(),( xTzEx
i) It is easy to see that 0.),(1 zxh Suppose to the
contrary that there exists )(0 Ex and ),( 00 xTz
such that 0,<),( 001 zxh then
i
nixKy
xyfyxzzxh )),,(>,(0 00
1),0(
001
),,(,)),,(>,(<max 000
1
xKyxyfyxz i
ni
which is impossible when .= 0xy Hence,
0,)),,(>,(<maxmax=),(
1),(
1
i
nixKy
xyfyxzzxh
where ).,(),( xTzEx Thus, since ),( xTz is
arbitrary, we have
0.)),,(>,(<maxmin=),(
),(),(
i
xKyxTz
xyfyxzxh
ii) By definition, 0=),( 00 xh if and only if there
exists ),( 000 xTz such that 0,=),( 001 zxh i.e.,
0,=)),,(>,(<maxmax 0000
1)0,0(
i
nixKy
xyfyxz
for )( 00 Ex if and only if, for any ),,( 00 xKy
0,)),,(>,(<max 0000
1
i
ni
xyfyxz
namely, there is an index ,1 0 ni such that
0,)),,(>,(<
00000
ixyfyxz which is equivalent
to
),,(,),,(>,< 000000 xKyRxyfyxz
n
that is, ).( 00 x
Remark 1.1 As far as we know, there have not
been any works on parametric gap functions for
mixed strong vector quasiequilibrium problems,
and hence our the parametric gap functions is new
and cannot compare with the existing ones in the
literature.
128 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017
Example 1.1 Let [0,1],=2,=,= nRX
[0,1],=),( xK
422,3
2
1
=),( xxxT and
0.=),,( xyf Now we consider the problem (QVIP),
finding ),( xKx and ),( xTz such that
))((3),(
2
1
=),,(>,< 422 xyxxxyxyfxyz
.2 R It follows from a direct computation
{0}=)( for all [0,1]. Now we show that (.,.)h is
a parametric gap function of (SQVIP). Indeed,
taking ,(1,1)= nintRe we have
i
nixKyxTz
xyfyxzxh )),,(>,(<maxmaxmin=),(
1),(),(
(0,1],
0=0,
=)))(((3max= 532
422
),( xifxx
xif
yxxx
xKy
Hence, (.,.)h is a parametric gap function of
(SQVIP).
The following Theorem 1.3 gives sufficient
condition for the parametric gap function (.,.)h is
continuous in . X
Theorem 1.3 Consider (SQVIP). If the following
conditions hold:
i) (.,.)K is continuous with compact values in
; X
ii) (.,.)T is upper semicontinuous with compact
values in . X
Then (.,.)h is lower semicontinuous in . X
Proof. First, we prove that (.,.)h is lower
semicontinuous in . X Indeed, we let Ra and
suppose that Xx )},{( satisfying
,),( axh and ),(),( 00 xx as . It
follows that =),( xh
.)),,(>,(<maxmaxmin=
1),(),(
axyfyxz i
nixKyxTz
We define the function RRXLXh n ),(:0 by
).()),,(>,(<maxmax=),,(
1),(
0
Exyfyxzzxh i
nixKy
Since g and f are continuous, we have
ixyfyxz )),,(>,(< is continuous, and since (.,.)K
is continuous with compact values in . X Thus,
by Proposition 19 in Section 3 of Chapter 1 [1] we
can deduce that ),,(0 zxh is continuous. By the
compactness of ),,( xT there exists ),( xTz
such that =),( xh
i
nixKyxTz
xyfyxz )),,(>,(<maxmaxmin=
1),(),(
=),,(= 0 zxh
.)),,(>,(<maxmax=
1),(
axyfyxz i
nixKy
Since (.,.)K is lower semicontinuous in , X for
any ),,( 000 xKy there exists ),( xKy such
that .0yy For ),,( xKy we have
.)),,(>,(<max
1
axyfyxz i
ni
(2)
Since (.,.)T is upper semicontinuous with
compact values in , X there exists ),( 000 xTz
such that 0zz (taking a subnet }{ z of }{ z if
necessary) as . Since
i
ni
xyfyxz )),,(>,(<max
1
is continuous. Taking the
limit in (2), we have
.)),,(>,(<max 000000
1
axyfyxz i
ni
(3)
Since ),( 00 xKy is arbitrary, it follows from
(3) that
=),,( 0000 zxh
.)),,(>,(<maxmax= 0000
1)0,0(
axyfyxz i
nixKy
and so, for any ),,( 00 xTz we have =),( 00 xh
.)),,(>,(<maxmaxmin= 000
1)0,0()0,0(
axyfyxz i
nixKyxTz
This proves that, for ,Ra the level set
}),(|),{( axhXx is closed. Hence, (.,.)h is
lower semicontinuous in . X
Theorem 1.4 Consider (SQVIP). If the following
conditions hold: [i)]
1. (.,.)K is continuous with compact values in
; X
2. (.,.)T is continuous with compact values in
. X
Then (.,.)h is continuous in . X
Proof. Now, we need to prove that (.,.)h is upper
semicontinuous in . X Indeed, let Ra and
suppose that Xx )},{( satisfying
,),( axh for all and ),(),( 00 xx as
, then =),( xh
axyfyxz i
nixKyxTz
)),,(>,(<maxmaxmin=
1),(),(
and so
TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 20, SỐ K2-2017
129
)(,)),,(>,(<maxmax ,
1),(
xTzaxyfyxz i
nixKy
(4)
Since (.,.)T is lower semicontinuous with
compact values in , X for any ),,( 000 xTz there
exists ),( xTz such that 0zz as .
Since ),,( xTz it follows (4) that
,)),,(>,(<maxmax
1),(
axyfyxz i
nixKy
(5)
Since f and g are continuous, so
i
ni
xyfyxz )),,(>,(<max
1
is continuous. By the
compactness of (.,.)K there exists ),( xKy
such that
.)),,(>,(<max
1
axyfyxz i
ni
(6)
Since (.,.)K is upper semicontinuous with
compact values, there exists ),( 000 xKy such that
0yy (taking a subnet }{ y of }{ y if
necessary) as . Since
i
ni
xyfyxz )),,(>,(<max
1
is continuous. Taking
limit in (6), we have
.)),,(>,(<max 000000
1
axyfyxz i
ni
(7)
For any ),,( 00 xKy we have
.)),,(>,(<maxmax 0000
1)0,0(
axyfyxz i
nixKy
(8)
Since ),( 00 xTz is arbitrary, it follows from (8)
that =),( 00 xh f
axyfyxz i
nixKyxTz
)),,(>,(<maxmaxmin= 000
1)0,0()0,0(
This proves that, for ,Ra the level set
}),(|),{( axhXx is closed. Hence, (.,.)h is
upper semincontinuous in . X
2 CONCLUSION
To the best of our knowledge, until now there
have not been any paper devoted to the lower
semicontinuity, continuity of the gap function
without the help of the nonlinear scalarization
function for a parametric mixed strong vector
quasivariational inequality problem in Hausdorff
topological vector spaces. Hence our results,
Theorem 1.3 and Theorem 1.4 are new.
REFERENCES
[1] J. P. Aubin and I. Ekeland, Applied
Nonlinear Analysis, 1em plus 0.5em minus
0.4em John Wiley and Sons, New York, 1984.
[2] D. Aussel D and J. Dutta, On gap functions
for multivalued stampacchia variational
inequalities, 1em plus 0.5em minus 0.4em J
Optim Theory Appl. 149, pp. 513-527, 2011.
[3] D. Aussel., R. Correa and M. Marechal, Gap
functions for quasivariational inequalities and
generalized Nash equilibrium problems, 1em
plus 0.5em minus 0.4em J. Optim Theory
Appl. 151, pp. 474-488, 2011.
[4] C. S. Lalitha and G. Bhatia, Stability of
parametric quasivariational inequality of the
Minty type, 1em plus 0.5em minus 0.4em J.
Optim. Theory. Appl. 148, pp. 281-300, 2011.
[5] J. Li and Z. Q. He, Gap functions and
existence of solutions to generalized vector
variational inequalities, 1em plus 0.5em
minus 0.4em Appl. Math. Lett., 18, pp. 989-
1000, 2005.
[6] S. J. Li, G. Y. Chen, Stability of weak vector
variational inequality problems, 1em plus
0.5em minus 0.4em Nonlinear Anal. TMA.,
70, pp. 1528-1535, 2009.
[7] D. T. Luc, Theory of Vector Optimization,
1em plus 0.5em minus 0.4em Lecture Notes in
Economics and Mathematical Systems,
Springer-Verlag Berlin Heidelberg, 1989.
[8] G. Mastroeni, Gap functions for equilibrium
problems, 1em plus 0.5em minus 0.4em J.
Global Optim., 27, pp. 411-426, 2003.
[9] S. K. Mishra and S. Y. Wang and K. K. Lai,
Gap function for set-valued vector variational-
like, 1em plus 0.5em minus 0.4em J. Optim.
Theory Appl., 138, pp. 77–84, 2008.
[10] X. Q. Yang and J. C. Yao, Gap Functions and
Existence of Solutions to Set-Valued Vector
Variational Inequalities, 1em plus 0.5em
minus 0.4em J Optim Theory Appl. 115, pp.
407–417, 2002.
130 SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 20, No.K2- 2017
Tóm tắt - Bài toán bất đẳng thức tựa biến phân
véc tơ tham số hỗn hợp mạnh bao gồm nhiều
vấn đề như bài toán bất đẳng thức biến phân,
bài toán điểm bất động, bài toán điểm trùng lặp,
bài toán bù nhau, v.v. Có nhiều tác giả đang
nghiên cứu tìm hàm gap cho bài toán bất đẳng
thức biến phân véc tơ. Bài toán này đóng vai trò
quan trọng trong nhiều lĩnh vực toán ứng dụng,
đặc biệt là lý thuyết tối ưu. Trong bài báo này,
chúng tôi nghiên cứu hàm gap tham số với sự hỗ
trợ của hàm phi tuyến vô hướng cho bài toán
bất đẳng thức tựa biến phân véc tơ tham số hỗn
hợp mạnh (viết tắt (SQVIP)) trong không gian
tô pô véc tơ Hausdorff. (SQVIP) Tìm
),( xKx và ),( xTz sao cho
),,(,),,(>,< xKyRxyfxyz n
với
}.,1,2,=0,|),,,(={= 21 nitRttttR i
nT
n
n
Ngoài ra, chúng tôi cũng thảo luận tính nửa liên
tục dưới, nửa liên tục trên và tính liên tục của
hàm gap tham số cho bài toán này. Theo những
hiểu biết của mình, chúng tôi cho rằng tới nay
chưa từng có bài báo nào nghiên cứu tính nửa
liên tục dưới, tính liên tục của hàm gap mà
không cần sự trợ giúp của hàm phi tuyến vô
hướng đối với bài toán bất đẳng thức tựa biến
phân véc tơ tham số hỗn hợp mạnh trong không
gian tô pô véc tơ Hausdorff. Do đó những kết
quả được trình bày trong bài báo này (Định lý
1.3 và Định lý 1.4) là mới và khác biệt so với một
số kết quả chính trong tài liệu tham khảo
Từ khóa - Bài toán bất đẳng thức tựa biến phân
véctơ; hàm gap tham số; tính nửa liên tục dưới; tính
nửa liên tục trên, tính liên tục.
Hàm GAP cho bài toán bất đẳng thức tựa biến
phân véc tơ tham số hỗn hợp mạnh
Lê Xuân Đại, Nguyễn Văn Hưng, Phan Thanh Kiều
File đính kèm:
ham_gap_cho_bai_toan_bat_dang_thuc_tua_bien_phan_vec_to_tham.pdf

