Giáo trình Linh kiện điện tử
CHƯƠNG I. LINH KIỆN THỤ ĐỘNG
Trạng thái điện của mỗi linh kiện điện tử được đặc trưng bởi 2 thông số:
điện áp u và cường độ dòng điện i. Mối quan hệ tương hỗ i=f(u) được biểu diễn
bởi đặc tuyến Volt-Ampere.
Người ta có thể phân chia các linh kiện điện tử theo hàm quan hệ trên là
tuyến tính hay phi tuyến. Nếu hàm i=f(u) là tuyến tính (hàm đại số bậc nhất hay
phương trình vi phân, tích phân tuyến tính), phần tử đó được gọi là phần tử tuyến
tính (R, L, C) và có thể áp dụng được nguyên lý xếp chồng.
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Linh kiện điện tử", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Giáo trình Linh kiện điện tử
GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 1 CHƯƠNG I. LINH KIỆN THỤ ĐỘNG Trạng thái điện của mỗi linh kiện điện tử được đặc trưng bởi 2 thông số: điện áp u và cường độ dòng điện i. Mối quan hệ tương hỗ i=f(u) được biểu diễn bởi đặc tuyến Volt-Ampere. Người ta có thể phân chia các linh kiện điện tử theo hàm quan hệ trên là tuyến tính hay phi tuyến. Nếu hàm i=f(u) là tuyến tính (hàm đại số bậc nhất hay phương trình vi phân, tích phân tuyến tính), phần tử đó được gọi là phần tử tuyến tính (R, L, C) và có thể áp dụng được nguyên lý xếp chồng. Điện trở: u R i . 1 Tụ điện: dt du Ci . Cuộn dây: dtuL i . 1 Nếu hàm i=f(u) là quan hệ phi tuyến (phương trình đại số bậc cao, phương trình vi phân hay tích phân phi tuyến), phần tử đó được gọi là phần tử phi tuyến (diode, Transistor). 2.1. Điện trở (Resistor) Như đã đề cập trong chương trước, dòng điện là dòng chuyển dời có hướng của các hạt mang điện và trong vật dẫn các hạt mang điện đó là các electron tự do. Các electron tự do có khả năng dịch chuyển được do tác động của điện áp nguồn và trong quá trình dịch chuyển các electron tự do va chạm với các nguyên tử nút mạng và các electron khác nên bị mất một phần năng lượng dưới dạng nhiệt. Sự va chạm này cản trở sự chuyển động của các electron tự do và được đặc trưng bởi giá trị điện trở. 2.1.1. Định nghĩa: Điện trở là linh kiện cản trở dòng điện, giá trị điện trở càng lớn dòng điện trong mạch càng nhỏ. Định luật Ohm: Cường độ dòng điện trong mạch thuần trở tỷ lệ thuận với điện áp cấp và tỷ lệ nghịch với điện trở của mạch. GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 2 R E I [E]: Volt (V) [I]: Ampere (A) [R]: Ohm (Ω) 2.1.2. Các thông số của điện trở a. Giá trị điện trở Giá trị điện trở đặc trưng cho khả năng cản trở dòng điện của điện trở. Yêu cầu cơ bản đối với giá trị điện trở đó là ít thay đổi theo nhiệt độ, độ ẩm và thời gian,Điện trở dẫn điện càng tốt thì giá trị của nó càng nhỏ và ngược lại. Giá trị điện trở được tính theo đơn vị Ohm (Ω), kΩ, MΩ, hoặc GΩ. Giá trị điện trở phụ thuộc vào vật liệu cản điện, kích thước của điện trở và nhiệt độ của môi trường. S l R . Trong đó: ρ: điện trở suất [Ωm] l: chiều dài dây dẫn [m] S: tiết diện dây dẫn [m2] Trong thực tế điện trở được sản xuất với một số thang giá trị xác định. Khi tính toán lý thuyết thiết kế mạch, cần chọn thang điện trở gần nhất với giá trị được tính. b. Sai số Sai số là độ chênh lệch tương đối giữa giá trị thực tế của điện trở và giá trị danh định, được tính theo % %100 dd ddtt R RR GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 3 Trong đó: Rtt: Giá trị thực tế của điện trở Rdd: Giá trị danh định của điện trở c. Hệ số nhiệt điện trở (TCR-Temperature Co-efficient of Resistor): TCR là sự thay đổi tương đối của giá trị điện trở khi nhiệt độ thay đổi 1oC, được tính theo phần triệu )/(10. / 6 Cppm R TR o (parts per million) Khi nhiệt độ tăng, số lượng các electron bứt ra khỏi quỹ đạo chuyển động tăng và va chạm với các electron tự do làm tăng khả năng cản trở dòng điện của vật dẫn. Trong hầu hết các chất dẫn điện khi nhiệt độ tăng thì giá trị điện trở tăng, hệ số 0 (PTC: Positive Temperature Co-efficient). Đối với các chất bán dẫn, khi nhiệt độ tăng số lượng electron bứt ra khỏi nguyên tử để trở thành electron tự do được gia tăng đột ngột, tuy sự va chạm trong mạng tinh thể cũng tăng nhưng không đáng kể so với sự gia tăng số lượng hạt dẫn, làm cho khả năng dẫn điện của vật liệu tăng, hay giá trị điện trở giảm, do đó có hệ số 0 (NTC: Negative Temperature Coefficient). Hệ số nhiệt 0 càng nhỏ, độ ổn định của giá trị điện trở càng cao. Tại một nhiệt độ xác định có hệ số nhiệt xác định, giả sử tại nhiệt độ T1 điện trở có giá trị là R1 và hệ số nhiệt là 1 , giá trị điện trở tại nhiệt độ T2: 12112 1 TTRR Hệ số góc= T R 0 o K Hình 2.1. Ảnh hưởng của nhiệt độ tới giá trị điện trở của vật dẫn GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 4 d.Công suất tối đa cho phép Khi có dòng điện cường độ I chạy qua điện trở R, năng lượng nhiệt tỏa ra trên R với công suất: RIIUP .. 2 Nếu dòng điện có cường độ càng lớn thì nhiệt lượng tiêu thụ trên R càng lớn làm cho điện trở càng nóng, do đó cần thiết kế điện trở có kích thước lớn để có thể tản nhiệt tốt. Công suất tối đa cho phép là công suất nhiệt lớn nhất mà điện trở có thể chịu được nếu quá ngưỡng đó điện trở bị nóng lên và có thể bị cháy. Công suất tối đa cho phép đặc trưng cho khả năng chịu nhiệt. RI R U P .2max 2 max max Trong các mạch thực tế, tại khối nguồn cấp, cường độ dòng điện mạnh nên các điện trở có kích thước lớn. Tại khối xử lý tín hiệu, cường độ dòng điện yếu nên các điện trở có kích thước nhỏ do chỉ phải chịu công suất nhiệt thấp. 2.1.3. Phân loại và ký hiệu điện trở a. Điện trở có giá trị xác định Điện trở than ép (Điện trở hợp chất Cacbon): Được chế tạo bằng cách trộn bột than với vật liệu cản điện, sau đó được nung nóng hóa thể rắn, nén thành dạng hình trụ và được bảo vệ bằng lớp vỏ giấy phủ gốm hay lớp sơn. Hợp chất Carbon Các điện cực Dây dẫn Dây dẫn Hình 2.2. Điện trở than ép GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 5 Điện trở than ép có dải giá trị tương đối rộng (từ1Ω đến 100MΩ), công suất danh định (1/8W-2W), nhưng phần lớn có công suất là 1/4W hoặc 1/2W. Một ưu điểm nổi bật của điện trở than ép đó chính là có tính thuần trở nên được sử dụng nhiều trong phạm vi tần số thấp (trong các bộ xử lý tín hiệu âm tần). Điện trở dây quấn được chế tạo bằng cách quấn một đoạn dây không phải là chất dẫn điện tốt (Nichrome) quanh một lõi hình trụ. Trở kháng phụ thuộc vào vật liệu dây dẫn, đường kính và độ dài của dây dẫn. Điện trở dây quấn có giá trị nhỏ, độ chính xác cao và có công suất nhiệt lớn. Tuy nhiên nhược điểm của điện trở dây quấn là nó có tính chất điện cảm nên không được sử dụng trong các mạch cao tần mà được ứng dụng nhiều trong các mạch âm tần. Điện trở màng mỏng: Được sản xuất bằng cách lắng đọng Cacbon, kim loại hoặc oxide kim loại dưới dạng màng mỏng trên lõi hình trụ. Điện trở màng mỏng có giá trị từ thấp đến trung bình, và có thể thấy rõ một ưu điểm nổi bật của điện trở màng mỏng đó là tính chất thuần trở nên được sử dụng trong phạm vi tần số cao, tuy nhiên có công suất nhiệt thấp và giá thành cao. Nichrome Lõi cách điện Dây dẫn Dây dẫn Hình 2.3. Điện trở dây quấn Màng mỏng Dây dẫn Dây dẫn Hình 2.4. Điện trở màng mỏng GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 6 b. Điện trở có giá trị thay đổi Biến trở (Variable Resistor) có cấu tạo gồm một điện trở màng than hoặc dây quấn có dạng hình cung, có trục xoay ở giữa nối với con trượt. Con trượt tiếp xúc động với với vành điện trở tạo nên cực thứ 3, nên khi con trượt dịch chuyển điện trở giữa cực thứ 3 và 1 trong 2 cực còn lại có thể thay đổi. Có thể có loại biến trở tuyến tính (giá trị điện trở thay đổi tuyến tính theo góc xoay) hoặc biến trở phi tuyến (giá trị điện trở thay đổi theo hàm logarit theo góc xoay). Biến trở được sử dụng điều khiển điện áp (potentiometer: chiết áp) hoặc điều khiển cường độ dòng điện (Rheostat) Điện trở nhiệt (Thermal Resistor -Thermistor): Là linh kiện có giá trị điện trở thay đổi theo nhiệt độ. Có 2 loại nhiệt trở: Nhiệt trở có hệ số nhiệt âm: Giá trị điện trở giảm khi nhiệt độ tăng (NTC), thông thường các chất bán dẫn có hệ số nhiệt âm do khi nhiệt độ tăng cung cấp đủ năng lượng cho các electron nhảy từ vùng hóa trị lên vùng dẫn nên số lượng hạt dẫn tăng đáng kể, ngoài ra tốc độ dịch chuyển của hạt dẫn cũng tăng nên giá trị điện trở giảm Nhiệt trở có hệ số nhiệt dương: Giá trị điện trở tăng khi nhiệt độ tăng, các nhiệt trở được làm bằng kim loại có hệ số nhiệt dương (PTC) do khi nhiệt độ Vành điện trở Trục điều khiển Con trượt 1 3 2 Rheostat VR 1 3 2 potentiometer VR Hình 2.5. Biến trở (VR) GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 7 tăng, các nguyên tử nút mạng dao động mạnh làm cản trở quá trình di chuyển của electron nên giá trị điện trở tăng. Nhiệt trở được sử dụng để điều khiển cường độ dòng điện, đo hoặc điều khiển nhiệt độ: ổn định nhiệt cho các tầng khuếch đại, đặc biệt là tầng khuếch đại công suất hoặc là linh kiện cảm biến trong các hệ thống tự động điều khiển theo nhiệt độ. Điện trở quang (Photo Resistor) Quang trở là linh kiện nhạy cảm với bức xạ điện từ quanh phổ ánh sáng nhìn thấy. Quang trở có giá trị điện trở thay đổi phụ thuộc vào cường độ ánh sáng chiếu vào nó. Cường độ ánh sáng càng mạnh thì giá trị điện trở càng giảm và ngược lại. Khi bị che tối: MnknR .100. Khi được chiếu sáng: knnR .100. Quang trở thường được sử dụng trong các mạch tự động điều khiển bằng ánh sáng:(Phát hiện người vào cửa tự động; Điều chỉnh độ sáng, độ nét ở Camera; Tự động bật đèn khi trời tối; Điều chỉnh độ nét của LCD;) 2.1.4. Cách ghi và đọc các tham số điện trở a. Biểu diễn trực tiếp Chữ cái đầu tiên và các chữ số biểu diễn giá trị của điện trở: R(E) – Ω; K - K Ω; M - M Ω; Chữ cái thứ hai biểu diễn dung sai: Ví dụ: 8K2J: R=8,2KΩ; δ=5% R=8,2KΩ 41,0 KΩ=7,79KΩ8,61KΩ F=1% J=5% G=2% K=10% H=2,5% M=20% λ λ GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 8 Hoặc có thể các chữ số để biểu diễn giá trị của điện trở và chữ cái để biểu diễn dung sai. Khi đó chữ số cuối cùng biểu diễn số chữ số 0 (bậc của lũy thừa 10). Ví dụ: 4703G: R=470K Ω; δ=2% b. Biểu diễn bằng các vạch màu Đối với các điện trở có kích thước nhỏ không thể ghi trực tiếp các thông số khi đó người ta thường vẽ các vòng màu lên thân điện trở. 3 vòng màu: 2 vòng đầu biểu diễn 2 chữ số có nghĩa thực Vòng thứ 3 biểu diễn số chữ số 0 (bậc của lũy thừa 10) Sai số δ=20% 4 vòng màu 2 vòng đầu biểu diễn 2 chữ số có nghĩa thực Vòng thứ 3 biểu diễn số chữ số 0 (bậc của lũy thừa 10) Vòng thứ 4 biểu diễn dung sai (tráng nhũ) 5 vòng màu: 3 vòng đầu biểu diễn 3 chữ số có nghĩa thực Vòng thứ 4 biểu diễn số chữ số 0 (bậc của lũy thừa 10) Vòng thứ 5 biểu diễn dung sai (tráng nhũ) Bảng quy ước mã vạch màu Màu Trị số Sai số Đen 0 Nâu 1 1% Đỏ 2 2% Cam 3 Vàng 4 Lục 5 Lam 6 GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 9 2.1.5. Ứng dụng Điện trở được sử dụng trong các mạch phân áp để phân cực cho Transistor đảm bảo cho mạch khuếch đại hoặc dao động hoạt động với hiệu suất cao nhất. Điện trở đóng vai trò là phần tử hạn dòng tránh cho các linh kiện bị phá hỏng do cường độ dòng quá lớn. Một ví dụ điển hình là trong mạch khuếch đại, nếu không có điện trở thì Transistor chịu dòng một chiều có cường độ tương đối lớn. Được sử dụng để chế tạo các dụng cụ sinh hoạt (bàn là, bếp điện hay bóng đèn,) hoặc các thiết bị trong công nghiệp (thiết bị sấy, sưởi,) do điện trở có đặc điểm tiêu hao năng lượng dưới dạng nhiệt. Xác định hằng số thời gian: Trong một số mạch tạo xung, điện trở được sử dụng để xác định hằng số thời gian. Phối hợp trở kháng: Để tổn hao trên đường truyền là nhỏ nhất cần thực hiện phối hợp trở kháng giữa nguồn tín hiệu và đầu vào của bộ khuếch đại, giữa đầu ra của bộ khuếch đại và tải, hay giữa đầu ra của tầng khuếch đại trước và đầu vào của tầng khuếch đại sau. 2.2. Tụ điện 2.2.1. Định nghĩa Tụ điện gồm 2 bản cực làm bằng chất dẫn điện được đặt song song với nhau, ở giữa là lớp cách điện gọi là chất điện môi (giấy tẩm dầu, mica, hay gốm, Tím 7 Xám 8 Trắng 9 Vàng kim -1 5% Bạc kim -2 10% Vạch 2 Vạch 4 Vạch 5 Vạch 3 Vạch 1 Bản cực kim loại Lớp điện môi (không khí) GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 10 không khí). Chất cách điện được lấy làm tên gọi cho tụ điện (tụ giấy, tụ dầu, tụ gốm hay tụ không khí). Nếu điện trở tiêu thụ điện năng và chuyển thành nhiệt năng thì tụ điện tích năng lượng dưới dạng năng lượng điện trường, sau đó năng lượng được giải phóng. Điều này được thể hiện ở đặc tính tích và phóng điện của tụ điện. 2.2.2. Các tham số của tụ điện a. Điện dung của tụ điện Giá trị điện dung đặc trưng cho khả năng tích lũy năng lượng của tụ điện. d S C o Trong đó: ε: Hệ số điện môi của chất cách điện εo=8,85.10 -12 (F/m): Hằng số điện môi của chân không S: Diện tích hiệu dụng của 2 bản cực d: Khoảng cách giữa 2 bản cực Điện dung có đơn vị là F, tuy nhiên trong thực tế 1F là giá trị rất lớn nên thường sử dụng các đơn vị khác: 1μF=10-6F; 1nF=10-9F; 1pF=10-12F Một số hệ số điện môi thông dụng: Chân không ε=1 Không khí ε=1,0006 Gốm ε =30-7500 Mica ε =5,5 Dầu ε =4 Giấy khô ε =2,2 Polystyrene ε =2,6 Ký hiệu C GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 11 b. Sai số: Là độ chênh lệch tương đối giữa giá trị điện dung thực tế và giá trị danh định của tụ điện, được tính theo % dd ddtt C CC Ctt: Điện dung thực tế Cdd: Điện dung danh định Tùy theo yêu cầu của mạch mà dung sai của tụ điện có giá trị lớn hay nhỏ. c. Trở kháng của tụ điện Trở kháng của tụ điện đặc trưng cho khả năng cản trở dòng điện xoay chiều của tụ điện cc Xj fCj Z . 2 1 fC X c 2 1 : dung kháng của tụ cZf :0 : hở mạch đối với thành phần một chiều 0: cZf : ngắn mạch đối với thành phần xoay chiều d. Hệ số nhiệt của tụ điện (TCC – Temperature Co-efficient of Capacitor) Là độ thay đổi tương đối của giá trị điện dung khi nhiệt độ thay đổi 1oC, được tính theo o/oo: )/(106 Cppm C T C TCC o TCC càng nhỏ thì giá trị điện dung càng ổn định, do đó mỗi loại tụ chỉ hoạt động trong một dải nhiệt độ nhất định. (a) C=200pF với chất điện môi là không khí (b) C=1,5μF với chất điện môi là gốm Gốm GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 12 e. Điện áp đánh thủng Khi đặt vào 2 bản cực của tụ điện áp một chiều, sinh ra một điện trường giữa 2 bản cực. Điện áp càng lớn thì cường độ điện trường càng lớn, do đó các electron có khả năng bứt ra khỏi nguyên tử trở thành các electron tự do, gây nên dòng rò. Nếu điện áp quá lớn, cường độ dòng rò tăng, làm mất tính chất cách điện của chất điện môi, người ta gọi đó là hiện tượng tụ bị đánh thủng. Điện áp một chiều đặt vào tụ khi đó gọi là điện áp đánh thủng. Khi sử dụng tụ cần chọn tụ có điện áp đánh thủng lớn hơn điện áp đặt vào tụ vài lần. Điện áp đánh thủng phụ thuộc vào tính chất và bề dày của lớp điện môi. Các tụ có điện áp đánh thủng lớn thường là các tụ có kích thước lớn và chất điện môi tốt (Mica hoặc Gốm). f. Dòng điện rò Thực tế trong chất điện môi vẫn tồn tại dòng điện có cường độ rất nhỏ, được gọi là dòng rò, khi đó có thể coi tụ điện tương đương với một điện trở có giá trị rất lớn, cỡ MΩ. 2.2.3. Phân loại và ký hiệu a.Tụ có điện dung xác định Tụ điện được phân chia thành 2 dạng chính: Tụ không phân cực (không có cực tính) và tụ phân cực hoặc cũng có thể phân loại theo chất điện môi. Tụ giấy ( Paper Capacitors): Tụ giấy là tụ không phân cực gồm các lá kim loại xen kẽ với các lớp giấy tẩm dầu được cuộn lại theo dạng hình trụ. Điện dung C=1nF0,1μF, điện áp đánh thủng của tụ giấy cỡ khoảng vài trăm Volt. Hoạt động trong dải tru ... iảm điện áp UAK sao cho dòng qua diode ID nhỏ hơn dòng duy trì IH. Ngoài ra, có thể kích mở diode Shockley bởi một xung có độ biến thiên dt du đủ lớn. Do các điện dung tiếp giáp ký sinh trong mỗi Transistor chống lại sự thay đổi điện áp gây nên dòng điện đủ lớn để kích mở cho diode Shockley. Do diode Shockley chỉ tồn tại tại một trạng thái sau mỗi lần được kích mở hoặc ngắt nên có thể coi diode Shockley như một “cái chốt” (latch). 4.5.2. Diac Diac là linh kiện bán dẫn gồm 2 diode Shockley được ghép song song nhưng ngược chiều nhau nên có thể dẫn dòng theo cả 2 chiều. Diac có 2 điện áp “ngưỡng đánh thủng”, được kích mở 1 lần trong mỗi nửa chu kỳ. Mỗi lần nguồn xoay chiều đảo cực tính, Diac ngắt dòng (off) tới thời điểm Diac được kích mở trong nửa chu kỳ tiếp theo, khi đó Diac chuyển sang trạng thái “thông” (on). GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 73 4.5.3. SCR a. Cấu tạo:SCR (Silicon Controlled Rectifier - Chỉnh lưu có điều khiển) có cấu trúc giống diode Shockley nhưng có thêm cực cửa G (Gate) đóng vai trò là cực điều khiển. b. Nguyên lý hoạt động 0 AKU : Đặc tuyến Volt_Ampere của SCR trong miền này tương tự với đặc tuyến của diode Shockley. A A K G p + p ++ n n ++ p n n p p n G K A p p n n A G K J1 J2 J3 G T1 T2 K IC2=β2.IB2 IB1 IC1 IB2 Dòng qua Diac Điện áp nguồn GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 74 0 AKU Nếu 0 GV : SCR hoạt động như một diode Shockley. Nếu 0 GV , xuất hiện dòng cực cửa IG cùng chiều với dòng ngược bão hòa trong SCR do đó tiếp giáp J2 bị đánh thủng với điện áp UAK nhỏ hơn nhiều so với trường hợp 0 GV ; có thể nói điện áp VG điều khiển điện áp “ngưỡng đánh thủng” UBO. Điện áp GV càng lớn thì điện áp UBO càng nhỏ. Sau khi được kích mở, cực cửa G mất vai trò điều khiển và SCR sẽ dẫn cho đến khi dòng qua SCR nhỏ hơn dòng duy trì IH. Vậy có thể kích mở Thyristor theo 2 cách: tăng điện áp UAK hoặc cấp một điện áp tới cực cửa G bởi một xung có năng lượng rất nhỏ. Điều này thể hiện đặc tính khuếch đại công suất của mạch chỉnh lưu sử dụng SCR. c. Ứng dụng Do chỉ dẫn dòng theo một chiều nên SCR cũng được ứng dụng trong các mạch chỉnh lưu. Điểm khác biệt của SCR so với Diode chỉnh lưu thông thường đó là có thể điều khiển được góc pha của tín hiệu ra trên tải (điều khiển công suất trên tải). Ngày nay, SCR là một trong những linh kiện chỉnh lưu có độ nhạy tốt nhất. Xét mạch chỉnh lưu có điều khiển đơn giản nhất. Diode D có tác dụng bảo vệ SCR trong nửa chu kỳ âm. Ban đầu, SCR ngắt, điện áp trên tải 0 Lu . Sau đó, điện áp dương được đưa tới cực cửa G ( 0 GKU ), SCR được kích mở tại giá trị điện áp BOs Uu tương ứng với một giá trị UGK xác định. Khi đó SCR tương đương với một điện trở thuần có giá trị rất nhỏ, nên điện áp trên tải sL uu . Có thể mắc thêm biến trở VR điều chỉnh điện áp UGK, tức là điều chỉnh điện áp ngưỡng đánh thủng UBO nên có thể điều khiển được góc pha tại đó SCR được kích mở. RL uS us uL GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 75 Tuy nhiên, đối với sơ đồ mạch như trên thì SCR có thể được kích mở tại góc pha lớn nhất là π/2, do tại thời điểm đó us đạt giá trị cực đại nếu SCR vẫn chưa được kích mở thì không thể kích mở tại góc pha lớn hơn. Mạch trên còn được gọi là mạch khống chế pha 900. Vậy muốn kích mở SCR tại góc pha lớn hơn π/2 có thể mắc thêm tụ điện C. GKDC uuu Điện áp uC dịch pha so với điện áp nguồn một góc trong khoảng ( 2 0 ), đóng vai trò giống điện áp nguồn đưa điện áp dương tới cực cửa G, nên có thể kích mở SCR tại góc pha bất kỳ trong khoảng ( 0 ) và được gọi là mạch khống chế pha 180 0 . 4.5.4. Triac a. Cấu tạo Triac là một linh kiện bán dẫn gồm 2 SCR được ghép song song nhưng ngược chiều, 2 cực cửa được nối với nhau. Đối với Triac, không còn cực Anode Ngưỡng đánh thủng RL us VR us uL RL VR us C SCR D uL Ngưỡng kích uC Ngưỡng đánh thủng GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 76 và Cathode mà thay vào đó là 2 cực chính MT1 và MT2 (Main Terminal). Cực G vẫn đóng vai trò là cực điều khiển. b. Nguyên lý hoạt động Triac tương đương với một cặp SCR nên có khả năng dẫn dòng theo cả 2 chiều. Tương ứng với mỗi giá trị của điện áp cực cửa VG, Triac sẽ có 2 ngưỡng đánh thủng không đối xứng. Khi đó, Triac được kích mở một lần trong mỗi nửa chu kỳ. Tuy nhiên, vai trò của 2 cực MT1 và MT2 là không giống nhau. Dòng kích cực cửa G phải được đưa từ cực MT2. c.Ứng dụng Khác với SCR được ứng dụng trong các mạch công suất lớn, Triac được sử dụng trong một số mạch công suất nhỏ, ví dụ như chuyển mạch đèn báo hiệu trong gia đình. Khâu di pha RC có tác dụng kích mở Triac tại một giá trị góc pha bất kỳ trong khoảng ( 0 ). Đèn us Đèn us GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 77 Tuy nhiên, do Triac được kích mở tại các điện áp ngưỡng không đối xứng gây nên các thành phần hài trong dạng sóng đầu ra, do đó thường Diac được mắc thêm vào mạch như sau: 4.5.5. UJT (UNIJUNCTION TRANSISTOR – TRANSISTOR ĐƠN NỐI). Transistor thường (BJT) gọi là Transistor lưỡng cực vì có hai nối PN trong lúc UJT chỉ có một độc nhất nối P-N. Tuy không thông dụng như BJT, nhưng UJT có một số đặc tính đặc biệt nên một thời đã giữ vai trò quan trọng trong các mạch tạo dạng sóng và định giờ. 1. Cấu tạo và đặc tính của UJT: Hình sau đây mô tả cấu tạo đơn giản hoá và ký hiệu của UJT Một thỏi bán dẫn pha nhẹ loại n- với hai lớp tiếp xúc kim loại ở hai đầu tạo thành hai cực nền B1 và B2. Nối PN được hình thành thường là hợp chất của dây nhôm nhỏ đóng vai trò chất bán dẫn loại P. Vùng P này nằm cách vùng B1 khoảng 70% so với chiều dài của hai cực nền B1, B2. Dây nhôm đóng vai trò cực phát E. Ký hiệu của Transistor một tiếp giáp UJT như trong hình B09.2 a và b. Đèn us GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 78 Hình B09.1. Hình B09.2. Trở kháng giữa base 1 và base 2 được đo khi dòng emitter =0 được gọi là “trở kháng giữa các base” (interbase) RBB và có giá trị điển hình khoảng 5K – 10 K Ohm. Hình B09.3 chỉ ra mạch tương đương đơn giản của UJT với cực Base loại N. Trở kháng RBB được phân đôi bởi chuyển tiếp P-N (biểu thị bởi diode) thành 2 điện trở RB1 và RB2 , mà tổng của nó bằng RBB . Trong chế độ hoạt động thông thường, điện áp VBB được cung cấp cho base 1 và base 2, với base 2 dương hơn so với 1. Khi không có dòng IE , thanh bán dẫn sẽ hoạt động giống như một bộ phân áp đơn giản và có một phần điện áp xác định của VBB xuất hiện trên RB1. Tỷ số n được gọi là “tỷ số cân bằng (stand-off) nội” và giá trị của nó khong khoảng 0,5 đến 0,9 . Tỷ số này được cho bởi: Điện áp VBB khiến cathode của diode của dương hơn so với B1 và có giá trị điện thế n.VBB . Nếu điện áp emitter VE nhỏ hơn giá trị này, chuyển tiếp sẽ được phân cực ngược và chỉ có một dòng emitter ngược nhỏ chảy qua. Nếu VE lớn hơn (nVBB + VD) , với VD là điện áp ngưỡng của chuyển tiếp, thì diode sẽ được phân cực ngược và có một dòng emitter thuận IE chảy qua. Dòng này do các lỗ trống “khuếch tán” vào phần thấp hơn của thanh bán dẫn và làm tăng độ dẫn (do số lượng các hạt dẫn tự do tăng). Điều này khiến cho điện trở RB1 giảm. Khi RB1 giảm, điện áp n.VBB cũng giảm, bởi thế có sự gia tăng điện áp thuận qua diode và tất nhiên dòng qua diode cũng tăng. Quá trình GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 79 tích luỹ này tiếp tục cho đến khi đạt đến giá trị dòng IE tức đạt đến trạng thái b•o hoà của thanh bán dẫn tại miền RB1 . Bắt đầu từ các điều kiện này, điện áp VE , mà có giá trị nhỏ nhất Vv (điện áp điểm trũng - valley voltage), bắt đầu tăng khi dòng tăng, giống như đặc tuyến thông thường của diode. Đặc trưng của đặc tuyến dòng/áp của UJT như chỉ ra ở hình B09.4. Trong đường cong này, có 3 miền làm việc: 1. 0 < VE < VP : dòng IE là rất nhỏ và trở kháng vào rất cao. 2. VP < VE < Vv : trở kháng vào là âm, có nghĩa một sự gia tăng dòng sẽ khiến cho điện áp giảm. 3. VE > Vv : trở kháng vào lại trở nên dương và có giá trị tương tự với trở kháng của diode khi dẫn. Các điểm đặc trưng: 1. VP được gọi là điện áp đỉnh và bằng: VP = n.VB2B1 + VD = n.VBB + VD. 2. Vv : điện áp điểm trũng. 3. Iv : dòng điện điểm trũng. Transistor UJT được dùng chủ yếu trong các mạch chuyển mạch, định thời, mạch trigger và mạch tạo xung. GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 80 CHƯƠNG 5: LINH KIỆN QUANG ĐIỆN TỬ Trong chương này, chúng ta chỉ đề cập đến một số các linh kiện quang điện tử thông dụng như quang điện trở, quang diod, quang transistor, led các linh kiện quang điện tử quá đặc biệt không được đề cập đến. I.QUANG ĐIỆN TRỞ (PHOTORESISTANCE). Là điện trở có trị số càng giảm khi được chiếu sáng càng mạnh. Điện trở tối (khi không được chiếu sáng - ở trong bóng tối) thường trên 1MΩ, trị số này giảm rất nhỏ có thể dưới 100Ω khi được chiếu sáng mạnh Nguyên lý làm việc của quang điện trở là khi ánh sáng chiếu vào chất bán dẫn (có thể là Cadmium sulfide – CdS, Cadmium selenide – CdSe) làm phát sinh các điện tử tự do, tức sự dẫn điện tăng lên và làm giảm điện trở của chất bán dẫn. Các đặc tính điện và độ nhạy của quang điện trở dĩ nhiên tùy thuộc vào vật liệu dùng trong chế tạo. GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 81 Về phương diện năng lượng, ta nói ánh sáng đã cung cấp một năng lượng E=h.f để các điện tử nhảy từ dãi hóa trị lên dãi dẫn điện. Như vậy năng lượng cần thiết h.f phải lớn hơn năng lượng của dãi cấm. Vài ứng dụng của quang điện trở: Quang điện trở được dùng rất phổ biến trong các mạch điều khiển 1. Mạch báo động: Khi quang điện trở được chiếu sáng (trạng thái thường trực) có điện trở nhỏ, điện thế cổng của SCR giảm nhỏ không đủ dòng kích nên SCR ngưng. Khi GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 82 nguồn sáng bị chắn, R tăng nhanh, điện thế cổng SCR tăng làm SCR dẫn điện, dòng điện qua tải làm cho mạch báo động hoạt động. Người ta cũng có thể dùng mạch như trên, với tải là một bóng đèn để có thể cháy sáng về đêm và tắt vào ban ngày. Hoặc có thể tải là một relais để điều khiển một mạch báo động có công suất lớn hơn. 2. Mạch mở điện tự động về đêm dùng điện AC: Ban ngày, trị số của quang điện trở nhỏ. Điện thế ở điểm A không đủ để mở Diac nên Triac không hoạt động, đèn tắt. về đêm, quang trở tăng trị số, làm tăng điện thế ở điểm A, thông Diac và kích Triac dẫn điện, bóng đèn sáng lên. II. QUANG DIOD (PHOTODIODE). Ta biết rằng khi một nối P-N được phân cực thuận thì vùng hiếm hẹp và dòng thuận lớn vì do hạt tải điện đa số (điện tử ở chất bán dẫn loại N và lỗ trống ở chất bán dẫn loại P) di chuyển tạo nên. Khi phân cực nghịch, vùng hiếm rộng và chỉ có dòng điện rỉ nhỏ (dòng bảo hòa nghịch I0) chạy qua. GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 83 Bây giờ ta xem một nối P-N được phân cực nghịch. Thí nghiệm cho thấy khi chiếu sáng ánh sáng vào mối nối (giả sử diod được chế tạo trong suốt), ta thấy dòng điện nghịch tăng lên gần như tỉ lệ với quang thông trong lúc dòng điện thuận không tăng. Hiện tượng này được dùng để chế tạo quang diod. Khi ánh sáng chiếu vào nối P-N có đủ năng lượng làm phát sinh các cặp điện tử - lỗ trống ở sát hai bên mối nối làm mật độ hạt tải điện thiểu số tăng lên. Các hạt tải điện thiểu số này khuếch tán qua mối nối tạo nên dòng điện đáng kể cộng thêm vào dòng điện bảo hòa nghịch I0 tự nhiên của diod, thường là dưới vài trăm nA với quang diod Si và dưới vài chục µA với quang diod Ge. Độ nhạy của quang diod tùy thuộc vào chất bán dẫn là Si, Ge hay Selenium Hình vẽ sau đây cho thấy độ nhạy đó theo tần số của ánh sáng chiếu vào các chất bán dẫn này: III. QUANG TRANSISTOR (PHOTO TRANSISTOR). Quang transistor là nới rộng đương nhiên của quang diod. Về mặt cấu tạo, quang transistor cũng giống như transistor thường nhưng cực nền để hở. Quang transistor có một thấu kính trong suốt để tập trung ánh sáng vào nối P-N giữa thu và nền. Khi cực nền để hở, nối nền-phát được phân cực thuậnchút ít do các dòng điện rỉ (điện thế VBE lúc đó khoảng vài chục mV ở transistor Si) và nối thu-nền được phân cực nghịch nên transistor ở vùng tác động. GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 84 Vì nối thu-nền được phân cực nghịch nên có dòng rỉ Ico chạy giữa cực thu và cực nền. Vì cực nền bỏ trống, nối nền-phát được phân cực thuận chút ít nên dòng điện cực thu là Ico(1+β). Đây là dòng tối của quang transistor. Khi có ánh sáng chiếu vào mối nối thu nền thì sự xuất hiện của các cặp điện tử và lỗ trống như trong quang diod làm phát sinh một dòng điện Iλ do ánh sáng nên dòng điện thu trở thành: IC=(β+1)(Ico+Iλ) Như vậy, trong quang transistor, cả dòng tối lẫn dòng chiếu sáng đều được nhân lên (β+1) lần so với quang diod nên dễ dàng sử dụng hơn. Hình trên trình bày đặc tính V-I của quang transistor với quang thông là một thông số. Ta thấy đặc tuyến này giống như đặc tuyến của transistor thường mắc theo kiểu cực phát chung. Có nhiều loại quang transistor như loại một transistor dùng để chuyển mạch dùng trong các mạch điều khiển, mạch đếm loại quang transistor Darlington có độ nhạy rất cao. Ngoài ra người ta còn chế tạo các quang SCR, quang triac GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 85 Vài ứng dụng của quang transistor: Đóng hay tắt Relais: Trong mạch đóng relais, khi quang transistor được chiếu sáng nó dẫn điện làm T1 thông, Relais hoạt động. Ngược lại trong mạch tắt relais, ở trạng thái thường trực quang transistor không được chiếu sáng nên quang transistor ngưng và T1 luôn thông, Relais ở trạng thái đóng. Khi được chiếu sáng, quang transistor dẫn mạnh làm T1 ngưng, Relais không hoạt động (ở trạng thái tắt). IV. DIOD PHÁT QUANG (LED-LIGHT EMITTING DIODE). Ở quang trở, quang diod và quang transistor, năng lượng củaq ánh sáng chiếu vào chất bán dẫn và cấp năng lượng cho các điện tử vượt dãi cấm. Ngược lại khi một điện tử từ dãi dẫn điện rớt xuống dãi hoá trị thí sẽ phát ra một năng lượng E=h.f Khi phân cực thuận một nối P-N, điện tử tự do từ vùng N xuyên qua vùng P và tái hợp với lỗ trống (về phương diện năng lượng ta nói các điện tử trong dãi dẫn điện – có năng lượng cao – rơi xuống dãi hoá trị - có năng lượng thấp – và kết hợp với lỗ trống), khi tái hợp thì sinh ra năng lượng. GIÁO TRÌNH LINH KIỆN ĐIỆN TỬ Page 86 Đối với diod Ge, Si thì năng lượng phát ra dưới dạng nhệit. Nhưng đối với diod cấu tạo bằng GaAs (Gallium Arsenide) năng lượng phát ra là ánh sáng hồng ngoại (không thấy được) dùng trong các mạch báo động, điều khiển từ xa). Với GaAsP (Gallium Arsenide phosphor) năng lượng phát ra là ánh sáng vàng hay đỏ. Với GaP (Gallium phosphor), năng lượng ánh sáng phát ra màu vàng hoặc xanh lá cây. Các Led phát ra ánh sáng thấy được dùng để làm đèn báo, trang trí Phần ngoài của LED có một thấu kính để tập trung ánh sáng phát ra ngoài. Để có ánh sáng liên tục, người ta phân cực thuận LED. Tùy theo vật liệu cấu tạo, điện thế thềm của LED thay đổi từ 1 đến 2.5V và dòng điện qua LED tối đa khoảng vài mA.
File đính kèm:
- giao_trinh_linh_kien_dien_tu.pdf