Bài giảng Xử lý số tín hiệu (Digital Signal Processing) - Chương 6: Các hàm truyền
2. Các hàm truyền
Ví dụ: xét hàm truyền sau:
Từ H(z) suy ra được:
Đáp ứng xung h(n)
Phương trình sai phân I/O thỏa bởi h(n)
Phương trình chập I/O
Thực hiện sơ đồ khối
Sơ đồ cực/ zero
Đáp ứng tần số H(ω)
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Xử lý số tín hiệu (Digital Signal Processing) - Chương 6: Các hàm truyền", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Xử lý số tín hiệu (Digital Signal Processing) - Chương 6: Các hàm truyền
Xử lý số tín hiệu Chương 6: Các hàm truyền 1. Các dạng mô tả tương đương của bộ lọc số Hàm truyền H(z) Phương trình chập vào/ra Đáp ứng xung h(n) Phương trình sai phân I/O Sơ đồ cực/zero Đáp ứng tần số H( ω ) Thực hiện sơ đồ khối Xử lý khối Xử lý mẫu PP thiết kế bộ lọc Các tiêu chuẩn thiết kế Ví dụ: xét hàm truyền sau: Từ H(z) suy ra được: Đáp ứng xung h(n) Phương trình sai phân I/O thỏa bởi h(n) Phương trình chập I/O Thực hiện sơ đồ khối Sơ đồ cực/ zero Đáp ứng tần số H( ω ) 2. Các hàm truyền Các dạng tương đương toán học của hàm truyền có thể dẫn đến các phương trình sai phân I/O khác nhau và các sơ đồ khối khác nhau cùng thuật toán xử lý mẫu tương ứng Ví dụ: Với hàm truyền Có thể viết dưới dạng: Dạng 1 Dạng 2 2. Các hàm truyền 3. Đáp ứng hình sine Đáp ứng trạng thái ổn định Tín hiệu vào: sine phức, tần số ω 0 , dài vô hạn Ngõ ra có thể xác định bằng 2 cách: Chập trong miền thời gian Phương pháp miền tần số Phổ tín hiệu vào: X( ) = 2 ( - 0 ) + (các phiên bản) 3. Đáp ứng hình sine Phổ tín hiệu ra: (phiên bản thứ nhất) Y( ) = H( )X() = 2 H( 0 )( - 0 ) DTFT ngược: Tổng quát: H( ) là số phức 3. Đáp ứng hình sine Tín hiệu vào gồm 2 tín hiệu sine tần số 1 và 2 kết hợp tuyến tính & bộ lọc tuyến tính: Tín hiệu vào tổng quát: phân tích Fourier thành các thành phần sine rồi tính ngõ ra. 3. Đáp ứng hình sine Độ trễ pha (Phase Delay): Độ trễ nhóm (Group Delay): => 3. Đáp ứng hình sine Bộ lọc có pha tuyến tính: d( )=D (constant) pha tuyến tính theo Các thành phần tần số đều có độ trễ D như nhau: 3. Đáp ứng hình sine Đáp ứng quá độ Tín hiệu vào: sine, bắt đầu tại t=0 với ROC: Giả sử bộ lọc có hàm truyền H(z): 3. Đáp ứng hình sine Ngõ ra: Y(z) = H(z).X(z) Giả sử bậc của N(z) nhỏ hơn M+1, khai triển phân số từng phần: với ROC: |z|>1 3. Đáp ứng hình sine Biến đổi ngược: Giả sử bộ lọc ổn định: 3. Đáp ứng hình sine Bộ lọc ổn định nghiêm ngặt, các hệ số Cực có biên độ lớn nhất p I thì hệ số tương ứng sẽ tiến về 0 chậm nhất. Ký hiệu: . Hằng số thời gian hiệu quả n eff là thời gian tại đó với là mức độ nhỏ mong muốn, ví dụ 1% 3. Đáp ứng hình sine Đáp ứng unit step: tín hiệu vào x(n) = u(n). Trường hợp đặc biệt của với 0 = 0 (z = 1) H(0) coi như đáp ứng DC của bộ lọc. Độ lợi DC: 3. Đáp ứng hình sine Đáp ứng unit step thay đổi: tín hiệu vào x(n) = (-1) n u(n). Trường hợp đặc biệt của với 0 = (z = -1) Độ lợi AC: 3. Đáp ứng hình sine Ví dụ Xác định đáp ứng quá độ đầy đủ của bộ lọc nhân quả với tín hiệu vào dạng sine phức, tần số 0, cho Xác định đáp ứng DC và AC của bộ lọc trên. Tính hằng số thời gian hiệu quả n eff để đạt đến = 1% 3. Đáp ứng hình sine Bộ lọc ổn định dự trữ (marginally stable): có cực nằm trên vòng tròn đơn vị. Xét bộ lọc H(z) có cực trên vòng tròn đơn vị . Bộ lọc sẽ có cực liên hợp: Giả sử các cực khác nằm trong vòng tròn đơn vị Đáp ứng quá độ 3. Đáp ứng hình sine Nếu thì tạo ra cộng hưởng và ngõ ra không ổn định. Ví dụ: Biết: 4. Thiết kế cực – zero Các bộ lọc bậc nhất Ví dụ: Thiết kế bộ lọc bậc 1 có hàm truyền dạng với 0< a,b <1 -b a e j 1 0 |H( )| |H( 0 )| |H( )| 4. Thiết kế cực – zero Cần 2 phương trình thiết kế để xác định a và b. 4. Thiết kế cực – zero Ví dụ : thiết kế bộ lọc có H( )/H(0) = 1/21 và n eff = 20 mẫu để đạt = 1% 4. Thiết kế cực – zero 2. Các bộ cộng hưởng Thiết kế một bộ lọc cộng hưởng bậc hai đơn giản, đáp ứng có một đỉnh đơn hẹp tại tần số 0 1 1/2 |H()| 2 0 /2 0 4. Thiết kế cực – zero - Để tạo 1 đỉnh tại = 0 , đặt 1 cực , 0 < R < 1 và cực liên hợp 0 - 0 R p p * 1 4. Thiết kế cực – zero Đáp ứng tần số: Chuẩn hóa bộ lọc: 4. Thiết kế cực – zero Độ rộng 3-dB fullwidth: độ rộng tại ½ cực đại của đáp ứng biên độ bình phương Tính theo dB: Giải ra 2 nghiệm 1 và 2 => = 2 - 1 4. Thiết kế cực – zero Chứng minh được: khi p nằm gần đường tròn (xem sách) dùng xác định giá trị R dựa trên băng thông cho trước. Ví dụ: thiết kế bộ lọc cộng hưởng 2 cực, đỉnh f0 = 500Hz và độ rộng = 32kHz, tốc độ lấy mẫu fs = 10kHz 4. Thiết kế cực – zero Phương pháp chung: đặt 1 cặp zero gần các cực theo cùng hướng các cực, tại và với Hàm truyền: với 4. Thiết kế cực – zero 0 - 0 |H( )| 2 1 r<R (boost) r>R (cut) 0 0
File đính kèm:
- bai_giang_xu_ly_so_tin_hieu_digital_signal_processing_chuong.ppt