Bài giảng Mô hình hóa và mô phỏng trong kỹ thuật ô tô - Nông Văn Vìn
Chương 1
KHÁI QUÁT VỀ MÔ HÌNH VÀ MÔ HÌNH HÓA HỆ THỐNG
1.1. Một số định nghĩa cơ bản
- Đối tượng (object) là tất cả những sự vật, sự kiện mà hoạt động của
con người có liên quan tới.
- Hệ thống (System) là tập hợp các đối tượng (con người, máy móc),
sự kiện mà giữa chúng có những mối quan hệ nhất định.
- Trạng thái của hệ thống (State of system) là tập hợp các tham số,
biến số dùng để mô tả hệ thống tại một thời điểm và trong điều kiện nhất định.
- Mô hình ( Model) là một sơ đồ phản ánh đối tượng, con người dùng
sơ đồ đó để nghiên cứu, thực nghiệm nhằm tìm ra quy luật hoạt động của đối
tượng hay nói cách khác mô hình là đối tượng thay thế của đối tượng gốc để
nghiên cứu về đối tượng gốc.
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Mô hình hóa và mô phỏng trong kỹ thuật ô tô - Nông Văn Vìn", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Mô hình hóa và mô phỏng trong kỹ thuật ô tô - Nông Văn Vìn
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT HƯNG YÊN NÔNG VĂN VÌN BÀI GIẢNG MÔ HÌNH HÓA VÀ MÔ PHỎNG TRONG KỸ THUẬT Ô TÔ HƯNG YÊN 2014 Bìa màu xanh 1 Chương 1 KHÁI QUÁT VỀ MÔ HÌNH VÀ MÔ HÌNH HÓA HỆ THỐNG 1.1. Một số định nghĩa cơ bản - Đối tượng (object) là tất cả những sự vật, sự kiện mà hoạt động của con người có liên quan tới. - Hệ thống (System) là tập hợp các đối tượng (con người, máy móc), sự kiện mà giữa chúng có những mối quan hệ nhất định. - Trạng thái của hệ thống (State of system) là tập hợp các tham số, biến số dùng để mô tả hệ thống tại một thời điểm và trong điều kiện nhất định. - Mô hình ( Model) là một sơ đồ phản ánh đối tượng, con người dùng sơ đồ đó để nghiên cứu, thực nghiệm nhằm tìm ra quy luật hoạt động của đối tượng hay nói cách khác mô hình là đối tượng thay thế của đối tượng gốc để nghiên cứu về đối tượng gốc. - Mô hình hóa (Modeling) là thay thế đối tượng gốc bằng một mô hình nhằm các thu nhận thông tin quan trọng về đối tượng bằng cách tiến hành các thực nghiệm trên mô hình. Lý thuyết xây dựng mô hình và nghiên cứu mô hình để hiểu biết về đối tượng gốc gọi lý thuyết mô hình hóa. Nếu các quá trình xảy ra trong mô hình đồng nhất (theo các chỉ tiêu định trước) với các quá trình xảy ra trong đối tượng gốc thì người ta nói rằng mô hình đồng nhất với đối tượng. Lúc này người ta có thể tiến hành các thực nghiệm trên mô hình để thu nhận thông tin về đối tượng. - Mô phỏng (Simulation, Imitation) là phương pháp mô hình hóa dựa trên việc xây dựng mô hình số (Numerical model) và dùng phương pháp số (Numerical method) để tìm các lời giải. Chính vì vậy máy tính số là công cụ hữu hiệu và duy nhất để thực hiện việc mô phỏng hệ thống. Lý thuyết cũng như thực nghiệm đã chứng minh rằng, chỉ có thể xây dựng được mô hình gần đúng với đối tượng mà thôi, vì trong quá trình mô hình hóa bao giờ cũng phải chấp nhận một số giả thiết nhằm giảm bớt độ phức tạp của mô hình, để mô hình có thể ứng dụng thuận tiện trong thực tế. Mặc dù vậy, mô hình hóa luôn luôn là một phương pháp hữu hiệu để con người nghiên cứu đối tượng, nhận biết các quá trình, các quy luật tự nhiên. Đặc biệt, ngày nay với sự trợ giúp đắc lực của khoa học kỹ thuật, nhất là khoa học máy tính và công nghệ thông tin, người ta đã phát triển các phương pháp mô hình hóa cho phép xây dựng các mô hình ngày càng gần với đối tượng nghiên cứu, đồng thời việc thu nhận, lựa chọn, xử lý các thông tin về mô hình rất thuận tiện, nhanh chóng và chính xác. Chính vì vậy, mô hình hóa là một phương pháp nghiên cứu khoa học mà tất cả những người làm khoa học, đặc biệt là các kỹ sư đều phải nghiên cứu và ứng dụng vào thực tiễn 2 hoạt động của mình. 1.2. Mô hình hóa hệ thống 1.2.1. Vai trò của phương pháp mô hình hóa hệ thống a) Khi nghiên cứu trên hệ thống thực gặp nhiều khó khăn do nhiều nguyên nhân gây ra như sau: - Giá thành nghiên cứu trên hệ thống thực quá đắt. Ví dụ: Nghiên cứu kết cấu tối ưu, độ bền, khả năng chống dao động của ô tô, tàu thủy, máy bay,... người ta phải tác động vào đối tượng nghiên cứu các lực đủ lớn đến mức có thể phá hủy đối tượng để từ đó đánh giá các chỉ tiêu kỹ thuật đã đề ra. Như vậy, giá thành nghiên cứu sẽ rất đắt. Bằng cách mô hình hóa trên máy tính ta dễ dàng xác định được kết cấu tối ưu của các thiết bị nói trên. - Nghiên cứu trên hệ thống thực đòi hỏi thời gian quá dài. Ví dụ: Nghiên cứu đánh giá độ tin cậy, đánh giá tuổi thọ trung bình của hệ thống kỹ thuật (thông thường tuổi thọ trung bình của hệ thống kỹ thuật khoảng 30 40 năm), hoặc nghiên cứu quá trình phát triển dân số trong khoảng thời gian 20 50 năm,. Nếu chờ đợi quãng thời gian dài như vậy mới có kết quả nghiên cứu thì không còn tính thời sự nữa. Bằng cách mô phỏng hệ thống và cho “hệ thống” vận hành tương đương với khoảng thời gian nghiên cứu người ta có thể đánh giá được các chỉ tiêu kỹ thuật cần thiết của hệ thống. - Nghiên cứu trên hệ thực ảnh hưởng đến sản xuất hoặc gây nguy hiểm cho người và thiết bị. Ví dụ: Nghiên cứu quá trình cháy trong lò hơi của nhà máy nhiệt điện, trong lò luyện clanhke của nhà máy xi măng. người ta phải thay đổi chế độ cấp nhiên liệu (than, dầu), tăng giảm sản lượng gió cấp, thay đổi áp suất trong lò,. Việc làm các thí nghiệm như vậy sẽ cản trở việc sản xuất bình thường, trong nhiều trường hợp có thể xảy ra cháy, nổ gây nguy hiểm cho người và thiết bị. Bằng cách mô phỏng hệ thống, người ta có thể cho hệ thống “vận hành” với các bộ thông số, các chế độ vận hành khác nhau để tìm ra lời giải tối ưu. -Trong một số trường hợp không cho phép làm thực nghiệm trên hệ thốngthực. Ví dụ: Nghiên cứu các hệ thống làm việc ở môi trường độc hại, nguy hiểm, dưới hầm sâu, dưới đáy biển, hoặc nghiên cứu trên cơ thể người,. Trong những trường hợp này dùng phương pháp mô phỏng là giải pháp duy nhất để nghiên cứu hệ thống. b) Phương pháp mô hình hóa cho phép đánh giá độ nhạy của hệ thống khi thay đổi tham số hoặc cấu trúc của hệ thống cũng như đánh giá phản ứng của hệ thống khi thay đổi tín hiệu điều khiển. Những số liệu này dùng để thiết kế hệ thống hoặc lựa chọn thông số tối ưu để vận hành hệ thống. 3 c) Phương pháp mô hình hóa cho phép nghiên cứu hệ thống ngay cả khi chưa có hệ thống thực Trong trường hợp này, khi chưa có hệ thống thực thì việc nghiên cứu trên mô hình là giải pháp duy nhất để đánh giá các chỉ tiêu kỹ thuật của hệ thống, lựa chọn cấu trúc và thông số tối ưu của hệ thống. đồng thời mô hình cũng được dùng để đào tạo và huấn luyện. Trong những trường hợp này dùng phương pháp mô phỏng mô hình hóa là giải pháp duy nhất để nghiên cứu hệ thống. 1.2.2. Phân loại mô hình hóa hệ thống Có thể căn cứ vào nhiều dấu hiệu khác nhau để phân loại mô hình. Hình 1.1 biểu diễn một cách phân loại mô hình điển hình. Theo cách này mô hình chia thành hai nhóm: mô hình vật lý và mô hình toán học hay còn gọi là mô hình trừu tượng. - Mô hình vật lý là mô hình được cấu tạo bởi các phần tử vật lý. Các thuộc tính của đối tượng phản ánh các định luật vật lý xảy ra trong mô hình. Nhóm mô hình vật lý được chia thành mô hình thu nhỏ và mô hình tương tự. Mô hình vật lý thu nhỏ có cấu tạo giống đối tượng thực nhưng có kích thước nhỏ hơn cho phù hợp với điều kiện của phòng thí nghiệm. Ví dụ, người ta chế tạo lò hơi của nhà máy nhiệt điện có kích thước nhỏ đặt trong phòng thí nghiệm để nghiên cứu các chế độ thủy văn của đập thủy điện. Ưu điểm của loại mô hình này là các quá trình vật lý xảy ra trong mô hình giống như trong đối tượng thực, có thể đo lường quan sát các đại lượng vật lý một cách trực quan với độ chính xác cao. Nhược điểm của mô hình vật lý thu nhỏ là giá thành đắt, vì vậy chỉ sử dụng khi thực sự cần thiết. - Mô hình vật lý tương tự được cấu tạo bằng các phần tử vật lý không giống với đối tượng thực nhưng các quá trình xảy ra trong mô hình tương đương với quá trình xảy ra trong đối tượng thực. Ví dụ, có thể nghiên cứu quá trình dao động của con lắc đơn bằng mô hình tương tự là mạch dao động R-L-C vì quá trình dao động điều hòa trong mạch R-L-C hoàn toàn tương tự quá trình dao động điều hòa của con lắc đơn, hoặc người ta có thể nghiên cứu đường dây tải điện bằng mô 4 hình tương tự là mạng bốn cực R-L-C. Ưu điểm của loại mô hình này là giá thành rẻ, cho phép chúng ta nghiên cứu một số đặc tính chủ yếu của đối tượng thực. - Mô hình toán học thuộc loại mô hình trừu tượng. Các thuộc tính được phản ánh bằng các biểu thức, phương trình toán học. Mô hình toán học được chia thành mô hình giải tích và mô hình số. Mô hình giải tích được xây dựng bởi các biểu thức giải tích. Ưu điểm của loại mô hình là cho ta kết quả rõ ràng, tổng quát. Nhược điểm của mô hình giải tích là thường phải chấp nhận một số giả thiết đơn giản hóa để có thể biểu diễn đối tượng thực bằng các biểu thức giải tích, vì vậy loại mô hình này chủ yếu được dùng cho các hệ tiền định và tuyến tính. - Mô hình số được xây dựng theo phương pháp số tức là bằng các chương trình chạy trên máy tính số. Ngày nay, nhờ sự phát triển của kỹ thuật máy tính và công nghệ thông tin, người ta đã xây dựng được các mô hình số có thể mô phỏng được quá trình hoạt động của đối tượng thực. Những mô hình loại này được gọi là mô hình mô phỏng. Ưu điểm của mô hình mô phỏng là có thể mô tả các yếu tố ngẫu nhiên và tính phi tuyến của đối tượng thực, do đó mô hình càng gần với đối tượng thực. Ngày này, mô hình mô phỏng được ứng dụng rất rộng rãi. Có thể căn cứ vào các đặc tính khác nhau để phân loại mô hình như: mô hình tĩnh và mô hình động, mô hình tiền định và mô hình ngẫu nhiên, mô hình tuyến tính và mô hình phi tuyến, mô hình có thông số tập trung, mô hình có thông số dải, mô hình liên tục, mô hình gián đoạn, . Mô hình phải đạt được hai tính chất cơ bản sau: Tính đồng nhất: mô hình phải đồng nhất với đối tượng mà nó phản ánh theo những tiêu chuẩn định trước. Tính thực dụng: Có khả năng sử dụng mô hình để nghiên cứu đối tượng. Rõ ràng, để tăng tính đồng nhất trong mô hình phải đưa vào nhiều yếu tố phản ánh đầy đủ các mặt của đối tượng. Nhưng như vậy nhiều khi mô hình trở nên quá phức tạp và cồng kềnh đến nỗi không thể dùng để tính toán được nghĩa là mất đi tính chất thực dụng của mô hình. Nếu quá chú trọng tính thực dụng, xây dựng mô hình quá đơn giản thì sai lệch giữa mô hình và đối tượng thực sẽ lớn, điều đó sẽ dẫn đến kết quả nghiên cứu không chính xác. Vì vậy, tùy thuộc vào mục đích nghiên cứu mà người ta lựa chọn tính đồng nhất và tính thực dụng của mô hình một cách thích hợp. 1.3. Phương pháp mô phỏng 1.3.1. Sơ đồ khối Các mô hình sơ đồ khối gồm hai đối tượng, các đường dây tín hiệu và các khối. Chức năng của đường dây tín hiệu là truyền dẫn tín hiệu, hoặc giá trị, từ điểm gốc ban đầu của nó (thường là một khối) tới điểm kết thúc (thường là một khối khác). Hướng của dòng tín hiệu được xác định bởi mũi tên trên đường tín 5 hiệu. Một hướng chỉ được xác định cho một đường tín hiệu, toàn bộ các tín hiệu truyền trên các nhánh khác phải theo hướng riêng. Mỗi khối là một thành phần xử lý để tác động tới tín hiệu và tham số đầu vào để tạo ra tín hiệu đầu ra. Bởi vì các khối chức năng có thể là phi tuyến cũng như tuyến tính nên tập hợp các khối chức năng riêng về thực tế là không giới hạn và hầu như không bao giờ có sự giống nhau giữa các nhà cung cấp về ngôn ngữ của khối chức năng. Tuynhiên, một sơ đồ ba khối cơ bản phải được thiết lập để các ngôn ngữ sơ đồ khối có điểm chung. Các khối này là nút cộng, khối khuếch đại và bộ tích phân. Một hệ thống kết hợp chặt chẽ ba khối đó được mô tả như Hình 1.2. Hình 1.2: Ví dụ về một hệ thống 3 khối 1.2.3. Bản chất của phương pháp mô phỏng Phương pháp mô phỏng có thể định nghĩa như sau: “Mô phỏng là quá trình xây dựng mô hình toán học của hệ thống thực và sau đó tiến hành tính toán thực nghiệm trên mô hình để mô tả, giải thích và dự đoán hành vi của hệ thống thực”. Theo định nghĩa này, có ba điểm cơ bản mà mô phỏng phải đạt được. Thứ nhất là phải có mô hình toán học tốt tức là mô hình có tính đồng nhất cao với hệ thực đòng thời mô hình được mô tả rõ ràng thuận tiện cho người sử dụng. Thứ hai là mô hình cần phải có khả năng làm thực nghiệm trên mô hình tức là có khả năng thực hiện các chương trình máy tính để xác định các thông tin về hệ thực. Cuối cùng là khả năng dự đoán hành vi của hệ thực tức là có thể mô tả sự phát triển của hệ thực theo thời gian. Phương pháp mô phỏng được đề xuất vào những năm 80 của thế kỷ 20, từ đó đến nay phương pháp mô phỏng đã được nghiên cứu, hoàn thiện, và ứng dụng thành công vào nhiều lĩnh vực khác nhau như lĩnh vực khoa học kỹ thuật, khoa học xã hội, kinh tế, y tế,... Sau đây trình bày một số lĩnh vực mà phương pháp mô phỏng đã được ứng dụng và phát huy được ưu thế của mình. - Phân tích và thiết kế hệ thống sản xuất, lập kế hoạch sản xuất. - Đánh giá phẩn cứng, phần mềm của hệ thống máy tính. - Quản lý và xác định chính sách sự trữ mua sắm vật tư của hệ thống kho vật tư, nguyên liệu. - Phân tích và đánh giá hệ thống phòng thủ quân sự, xác định chiến lược phòng 6 thủ, tấn công. - Phân tích và thiết kế hệ thống thông tin liên lạc, đánh giá khả năng làm việc của mạng thông tin. - Phân tích và thiết kế các hệ thống giao thông như đường sắt, đường bộ, hàng không, cảng biển. - Đánh giá, phân tích và thiết kế các cơ sở dịch vụ như bệnh viện, bưu điện, nhà hàng, siêu thị. - Phân tích hệ thống kinh tế, tài chính. Phương pháp mô phỏng được ứng dụng vào các giai đoạn khác nhau của việc nghiên cứu, thiết kế và vận hành các hệ thống như sau: + Phương pháp mô phỏng được ứng dụng vào giai đoạn nghiên cứu, khảo sát hệ thống trước khi tiến hành thiết kế nhằm xác định độ nhạy của hệ thống đối với sự thay đổi cấu trúc và tham số của hệ thống. + Phương pháp mô phỏng được ứng dụng vào giai đoạn thiết kế hệ thống để phân tích và tổng hợp các phương án thiết kế hệ thống, lựa chọn cấu trúc hệ thống thỏa mãn các chỉ tiêu cho trước. + Phương pháp mô phỏng được ứng dụng vào giai đoạn vận hành hệ thống để đánh giá khả năng hoạt động, giải bài toán vận hành tối ưu, chẩn đoán các trang thái đặc biệt của hệ thống. Quá trình mô hình hóa được tiến hành như sau: Gọi hệ thống được mô phỏng là S. Bước thứ nhất người ta mô hình hóa hệ thống S với các mối quan hệ nội tại của nó. Để thuận tiện trong việc mô hình hóa, người ta thường chia hệ S thành nhiều hệ con theo các tiêu chí nào đó S = S1, S2, S3, ... , Sn. Tiếp đến người ta mô tả toán học các hệ con cùng các quan hệ giữa chúng. Thông thường giữa các hệ con có mối quan hệ trao đổi năng lượng và trao đổi thông tin. Bước thứ hai người ta mô hình hóa môi trường xung quanh E, nơi hệ thống S làm việc, với các mối quan hệ tác động qua lại giữa S và E. Khi đã có mô hình của S và E, người ta tiến hành các thực nghiệm trên mô hình, tức là cho S và E làm việc ở một điều kiện xác định nào đó. Kết quả người ta thu đươc một bộ thông số của hệ thống, hay thường gọi là xác định được một điểm làm việc của hệ thống. Các thực nghiệm đó được lặp lại nhiều lần và kết quả mô phỏng được đánh giá theo xác suất thống kê. Kết quả mô phỏng càng chính xác nếu số lần thực nghiệm, còn gọi là bước mô phỏng càng lớn. về lý thuyết bước mô phỏng là hữu hạn nhưng phải đủ lớn và phụ thuộc vào yêu cầu của độ chính xác. Hình 1.3 trình bày quá trình nghiên cứu bằng phương pháp mô phỏng và quan hệ giữa hệ thống thực với kết quả mô phỏng. 7 Hình 1.3. Quá trình nghiên cứu bằng phương pháp mô phỏng Nhìn vào hình 1.3 ta thấy rằng để nghiên cứu hệ thống thực ta phải tiến hành mô hình hóa tức là xây dựng mô hình mô phỏng. Khi có mô hình mô phỏng sẽ tiến hành làm các thực nghiệm trên mô hình để thu được các kết quả mô phỏng. Thông thường kết quả mô phỏng có tính trừu tượng của toán học nên phải thông qua xử lý mới thu được các thông tin kết luận về hệ thống thực. Sau đó dùng các thông tin và kết luận trên để hiệu chỉnh hệ th ... egrator 3 Gain1 1/2 Gain Kết quả mô phỏng như đồ thị sau Sơ đồ mô phỏng Simulink với m=2; k=3; Hàm kích thích 0 0 1 0 khi t f khi t 44 Step Scope 1 s Integrator1 1 s Integrator 3 Gain1 1/2 Gain Kết quả: 1 Chương 3 MÔ PHỎNG CÁC HỆ THỐNG TRÊN Ô TÔ 3.1. Mô phỏng dao động ô tô ¼ 3.1.1. Mô hình vật lý Mô hình dao động ô tô ¼ được thể hiện trên hình 3.1. 3.1.2. Phương trình vi phân dao động Hệ phương trình vi phân dao động của ô tô ¼ được thành lập theo phương pháp D’Lambe: 1 1 1 1 1( ) ( )F c q z k q z & & 2 2 1 2 2 1 2( ) ( )F c z z k z z & & 1) Khi tính đến thế năng trong trường: 1 1 1 2 1 2 2 2 2 .m z F F m g m z F m g & & 1 1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 1 2 2 1 2 2 . [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] m z k q z c q z k z z c z z m g m z k z z c z z m g && & & & & & & (3.1) 2) Khi khảo sát dao động xung quanh vị trí cân bằng tĩnh 1 1 1 2 2 2 2 .m z F F m z F & & Hình 3.1. Mô hình phẳng dao động ô tô 1/4 F1 F2 m1 m2 k1 c1 z1 q q k2 c2 z2 0 0 F2 2 1 1 1 1 1 1 2 1 2 2 1 2 2 2 2 1 2 2 1 2 . [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] m z k q z c q z k z z c z z m z k z z c z z && & & & & & & (2) 3. Hàm mấp mô mặt đường: 0 sin( )q q t 3.1.3.Mô hình mô phỏng dao động trong Matlab Simulink 1) Sơ đồ mô phỏng như hình 3.2 Dao ®éng « t« _Model_1/4 fi leData= Data_daodong_1p4.m fi leDoc = Model_daodong_1p4.doc fileName= Model_daodong_1p4.mdl (Dao ®éng xung quanh vÞ trÝ c©n b»ng tÜnh) k2*(dz1 - dz2)+c2*(z1-z2) c2(z1-z2) Sine Wave Scope4 Scope3 Scope2 1 s Integrator3 1 s Integrator2 1 s Integrator1 1 s Integrator c1 Gain5 k1 Gain4 c2 Gain3 k2 Gain2 1/m2 Gain1 1/m1 Gain du/dt Derivative z1 z1 dz1 dz1ddz2 ddz2 q dz2 z2 Hình 3.2. Sơ đồ mô phỏng dao động ô tô 1/4 2) Số liệu đầu vào : Các số liệu đầu vào được nhập từ file Matlab %=============================== % fileName= Data_model_1p4.m %=============================== clc; clear all; global q0 k1 k2 c1 c2 m1 m2 w m1= 100; % kg m2= 400; % kg k1= 1000; % Ns/m` k2= 1000; % Ns/m c1= 45000; % N/m c2= 35000; % N/m g= 9.81 ; % m/s^2 w = 3; % 1/s (tan so) q0= 0.2; % m (Bien do z10=(m1+m2)*g/c1; % Bien dang ban dau loxo z20=m2*g/c2; open A_Molel_daodong_1p4 3 sim('A_Molel_daodong_1p4') %========================================== % giai bang ODE x0= [0; 0; 0;0]; [t,Y]= ode45('f_model_1p4',[0 10],x0); z1 = Y(:,1); Vz1= Y(:,2); z2 = Y(:,3); Vz2= Y(:,4); figure(1), hold on plot(t,z1,'r') plot(t,Vz1,'r') plot(t,z2,'--k') plot(t,Vz2,'--k','linewidth',1.5) grid on legend('z1', 'Vz1', 'z2', 'Vz2') title('Dao dong 1/4') xlabel('t,s') 3) Kết quả mô phỏng 4 3.2. Mô phỏng dao động ô tô 1/2 3.2.1. Mô hình vật lý Mô hình dao động của ô tô theo phương thẳng đứng trong mặt phẳng đối xứng dọc (thường được gọi là mô hình dao động ½) được thể hiện trên hình 3.3. Mô hình này chỉ xét sự dao động của cơ hệ xung quanh vị trí cân bằng tĩnh. Các ký hiệu trên mô hình: M khối lượng được treo (thân xe), kg ; Iy mô men quán tính của khối lượng được đối với trục ngang y đi qua trọng tâm 0, kgm2; m khối lượng không được treo, kg; FT lực tác dụng của hệ thống treo lên thân xe, N; cT độ cứng của hệ thống treo (nhíp), N/m; kT hệ số cản giảm chấn của hệ thống treo, Ns/m; FL lực tác dụng của bánh xe lên khối lượng không được treo, N; cL độ cứng của lốp theo phương hướng kính, N/m; kL hệ số cản giảm chấn của lốp theo phương hướng kính, Ns/m q độ cao mấp mô mặt đường tại điểm tiếp xúc với bánh xe , m; Các chỉ số của các thông số: chỉ số 1 ký hiệu cho cầu trước, chỉ số 2 ký hiệu cho cầu sau. Lưu ý: Do chỉ xét dao động xung quanh vị trí cân bằng tĩnh nên trên mô hình 5 không thể hiện các lực trọng trường Mg, m1g và m2g. Chọn hệ tọa độ khảo sát: Đối với khối lượng được treo: Khối lượng được treo M thực hiện chuyển động song phẳng, vừa chuyển động lên xuống theo trục z, vừa xoay quanh trục ngang y. Chọn hệ tọa độ x0z , gốc tọa độ đặt tại trọng tâm 0, z là dịch chuyển tương đối so với vị trí cân bằng tĩnh, góc xoay thân xe quanh trục y đi qua trọng tâm. Tại thời điểm ban đầu t = 0 thì z (0)= 0; (0) = 0. Xét dao động góc nhỏ, khi đó có thể giả thiết tọa độ x của các điểm là hàng số. Điểm A đặt trên cầu trước có tọa độ là xA = a = const, za = za(t), = (t). Điểm B đặt trên cầu sau, có xB = b, zb = zb(t); (t). Đối với các khối lượng không được treo: chỉ thực hiện chuyển động lên xuống the phương thẳng đứng. Chọn gốc tọa độ tại trọng tâm của khối lượng không được treo khi cơ hệ ở vị trí cân bằng tĩnh: 1 ký hiệu cho cầu trước, 2 ký hiệu cho cầu sau. 3.2.2. Phương trình vi phân dao động của ô tô Dựa theo mô hình vật lý và sử dụng phương pháp D’lambe ta có thể thành lập được các phương trình vi phân dao động cho các khối lượng như sau: Đối với khối lượng được treo (Thân xe): Hình 3.3. Mô hình dao động ô tô 1/2 z x y FL1 FT1 m1 kL1 cL1 z1 q1 q1 kT1 cT1 x FT1 M, Iy z 0 A B FT2 FT2 z2 m2 FL2 q2 q2 kL2 cL2 a b L kT2 cT2 za zb 6 1 2 1 2 T T y T T Mz F F J F a F b & & (1) Đối với khối lượng không được treo: 1 1 1 1 2 2 2 2 L T L T m z F F m z F F & & (2) Như vậy hệ phương trình vi phân dao động của ô tô có dạng: 1 2 1 2 1 1 1 1 2 2 2 2 T T y T T L T L T Mz F F J F a F b m z F F m z F F & & & & (3) 3. 2.3. Xác định các lực thành phần a. Các phương trình liên kết hình học và động hoc Xét dao động với góc xoay nhỏ, ta có thể tính gần đúng sin . Quan hệ hình học và động học của điểm A và điểm B với trọng tâm được thể hiện qua các phương trình liên kết sau đây: Quan hệ hình học: a b z z a z z b (4) Quan hệ vận tốc: a b z z a z z b && & && & (5) Quan hệ gia tốc: a b z z a z z b && & && & (6) b. Lực đàn hồi của hệ thống treo cầu trước 1 1 1 1 1( ) ( )T T a T aF c z z k z z & & (7) c. Lực đàn hồi của hệ thống treo cầu sau 2 2 2 2 2( ) ( )T T b T bF c z z k z z & & (8) d. Lực đàn hồi của lốp trước 1 1 1 1 1 1 1( ) ( )L L LF c q z k q z & & (9) e. Lực đàn hồi của lốp sau 2 2 2 2 2 2 2( ) ( )L L LF c q z k q z & & (10) 3. 2.4. Phương trình mô tả biên dạng mặt đường Trong thực tế, ô tô có thể chuyển động trên các biên dạng mặt đường khác nhau, thường là các dạng mặt đường ngẫu nhiên. Để đơn giản hóa trong quá trình nghiên cứu các bài toán động lực học của ô tô, thường người ta giả thiết biên dạng mặt đường biến đổi theo các hàm định trị (hàm toán học xác định): hàm xung đơn vi, hàm bậc thang đơn vị, hàm bậc nửa sin, hàm điều hòa hình sin. Trong phạm vi tiểu luận này, chúng tôi chỉ khảo sát trường hợp biên dạng mặt 7 đường là hàm điều hòa hình sin (Hình 2). Biên dạng mặt đường có thể biểu diễn theo hàm thời gian: Đối với cầu trước: 0 sin( )q q t (11) Đối với cầu sau: 0( ) sin( ) L q t q t V (12) Trong đó: 0 2 V S tần số góc, rad/s; q0 biên độ mấp mô mặt đường , m; V vận tốc chuyển động của ô tô, m/s; L khoảng cách từ cầu trước đến cầu sau, m; S0 bước sóng biên dạng mặt đường, m . 3.2.5 Xây dựng mô hình mô phỏng dao động ô tô 1/2 bằng Matlab Simulink 3.2.5.1. Xây dựng mô hình tổng thể mô phỏng dao động ô tô 1/2 Phương trình vi phân dao động (3) có thể giải và mô phỏng kết quả bằng ngôn ngữ Simulink với sơ đồ khối tổng thể như hình 3. Mô hình được chia thành 4 mô đun: 1 Mô đun giải hệ phương trình vi phân dao động 2 Mô đun hiện thị các điều kiện khảo sat 3 Mô đun hiện thị các kết quả khảo sat bằng đồ thị 4 Mô đun tính toán chỉ tiêu đánh giá độ êm dịu chuyển động Hình 3.4. Biên dạng mặt đường hình sin t q 0 S0 q0 S T 8 Model dao ®éng « t« 1/2 Xe tai GAZ-66 VE DO THI Transport Delay In 1 In 2 Than xe Sine Wave In 1 O u t1 Lop truoc q 2 F L 2 Lop sau GIA TOC BINH PHUONG TRUNG BINH DIEU KIEN KHAO SAT In 1 F T 1 Cau truoc F L 2 F T 2 Cau sau FT1 FT2 FL1 FL2 q1 q1 q2 3.2.5.2. Sơ đồ các khối chức năng a. Khối model lốp trước. (Luc tac dong len Cau truoc) Model Lèp tr-íc 1 Out1 q1 Goto kL1 cL1 dz1 z1 du/dt 1 In1 q1 FL1 b. Khối model lốp sau 9 Model Lèp sau (Luc tac dong len Cau Sau) 1 FL2 kL2 cL2 dz2 z2 du/dt 1 q2 FL2 q2 c. Khối model cầu trước. Model CÇu tr-íc Luc tac dong cua banh xe len Cau truoc (Luc tac dong len Than xe) 1 FT1 1 s Integrator1 1 s Integrator dz1 Goto1 z1 Goto 1/m1 cT1 kT1 zA dzA 1 In1 ddz1 dz1 dz1z1 z1 FT1 FT1 FL1 d. Khối model Cầu sau (Luc tac dong len diem B Than xe)Luc tac dong cua banh xe len Cau sau Model CÇu sau 1 FT2 1 s Integrator1 1 s Integrator dz2 Goto1 z2 Goto 1/m2 cT2 kT2 zB dzB 1 FL2 FL2 FT2 FT2 z2 z2 dz2 dz2ddz1 f. Khối model thân xe 10 Mô hình toán: 1 2 1 2 T T y T T Mz F F J F a F b & & Model Th©n xe CAC MO HINH LIEN KET Lien ket hinh hoc Lien ket van toc Lien ket gia toc 1 s Integrator3 1 s Integrator2 1 s Integrator1 1 s Integrator ddzB ddfi ddzA ddz dzB dzA zB zA dfi dz fi Goto1 z Goto b a b a b a b a 1/Iy 1/M ddz dfi dfi dz dz fi fi z ddfi ddfi ddz z 2 In2 1 In1 ddz dz z df iddf i f i FT1 FT1 FT1 FT2 FT2 FT2 zA zB dzA dzB ddzA ddzB g. Mô đun hiển thị các đồ thị kết quả mô phỏng Mô đun này cho hiện thị các đồ thị kết quả chính theo hàm thời gian: 1 Gia tốc 2( / )z m s& , vận tốc ( / )z m s& và dịch chuyển z (m) của trọng tâm thân xe ứng với điều kiện khảo sát đã cho. 2 Gia tốc xoay 2( / ),rad s & vận tốc xoay ( / )rad s & và góc xoay (độ) của thân xe theo hàm thời gian ứng với điều kiện khảo sát đã cho. 3 Gia tốc dao động của các điểm trên thân xe: 2( / )z m s& của trọng tâm, 2( / )az m s& của điểm A (lắp ghế ngồi trong buồng lai) và 2( / )bz m s& của cầu sau ứng với điều kiện khảo sat đã cho. Các thông số trên là một trong các cơ sở để phân tích và đánh giá quá trình dao động của ô tô. 11 Khèi vÏ ®å thÞ Scope q1 ddzB ddzA q1 fi dfi ddzB ddfi q1 ddz ddzA ddz From Gia toc trong tam Gia toc diem A Gia toc diem B Song map mo ddz ddzA ddzB q1 ddf i df i f i q1 h. Mô đun tính toán chỉ tiêu đánh giá độ êm dịu chuyển động Độ êm dịu chuyển động được đánh giá theo chỉ tiêu gia tốc bình phương trung bình: Đối với trọng tâm: 2 2_ 0 1 ( ) ( / ) T RMS Ta z t dt m s T & Đối với điểm A (buồng lái): 2 2_ 0 1 ( ) ( / ) T RMS A aa z t dt m s T & Đối với điểm B (cầu sau): 2 2_ 0 1 ( ) ( / ) T RMS B ba z t dt m s T & Khối tính toán RMS gia tốc thể hiện trên simulink: Các kết quả thể hiện bằng số trên khối simulink sau; 12 TÝnh Gia tèc b×nh ph-¬ng trung b×nh RMS(m/s2) RMS- Trong tam RMS- Cau truoc RMS- Cau sau In1 Out1 RMS-Gia tocT In1 Out1 RMS-Gia tocB In1 Out1 RMS-Gia tocA ddzB ddzA ddz 3.932 Display3 2.284 Display1 2.941 Display i. Mô đun hiện thị điều kiện khảo sat §iÒu kiÖn kh¶o s¸t 0.05 10 3 0.9259 Display2 q0 s0 V0 f Dieu kien khao sat 3.2.5.3. Ví dụ mô phỏng a. Các thông số kỹ thuật của xe mô phỏng Xe mô phỏng là ô tô tải 2 cầu GAZ 66 với các thông số kỹ thuật như Bảng 3.1 Bảng 3.1 Các thông số vào của mô hình dao động của ô tô GAZ-66 STT Tên gọi Ký hiệu Giá trị Đơn vị 1 Khối lượng xe khi đầy tải Ma 5970 kg 2 Khối lượng phân bố lên cầutrước M1 2930 kg 3 Khối lượng phân bố lên cầu sau M2 3040 kg 4 Khối lượng cầu trước mc1 340 kg 5 Khối lượng cầu sau m2 260 kg 6 Chiều dài cơ sở L 3,3 m 7 Khoảng cách từ trọng tâm tới tâm cầu trước a 1,73 m 8 Khoảng cách từ trọng tâm tới tâm cầu sau b 1,57 m 13 9 Bán kính quán tính khối lượng phần treo đối với trục ngang y khi xe đầy tải Y 1.45 m 10 Mô men quán tính khối lượng phần treo đối với trục ngang Jy 12060 kgm 2 11 Độ cứng của phần tử đàn hồi trước C1 100000 N/m 12 Độ cứng của phần tử đàn hồi sau C2 106000 N/m 13 Hệ số cản giảm chấn (nén/trả) Kn/Kt 2400/7800 N.sec/m 14 Độ cứng hướng kính của lốp trước CL1 430000 N/m 15 Độ cứng hướng kính của lốp sau CL2 430000 N/m 16 Độ võng tĩnh của treo trước khi dầy xe tải ft1 0.11 m 17 Độ võng tĩnh của treo sau khi xe đầy tải ft2 0.115 m b. Nhập các thông số đầu vào mô hình mô phỏng Để nhập các thông số đầu vào của mô hình mô phỏng ta co thể nhập trực tiếp trên mô hình Simulink hoặc nhập từ môi trường Matlab. Ở đây ta nhập từ môi trường Matlab. Code của chương trình Matlab được ghi trong M file với nội dung như sau: %====================================================================== % fleName = Model_Daodong_Oto_1p2_OK2b.mdl % fileData= Data_daodong_Oto_GAZ66.m (Xe tai GAZ66) % %====================================================================== clc clear all % SO LIEU DAU VAO: Xe tai GAZ66 %===================================================================== Xe=' Oto tai GAZ-66'; % CAU TRUOC m1 = 340 ; % khoi luomg cau truoc (kg) cL1= 430000 ; % he so cung Lop truoc (N/m) kL1= 0 ; % he so giam chan Lop truoc (Ns/m) cT1= 100000 ; % he so cung loxo cau truoc (N/m) kT1= 7800 ; % he so giam chan cau truoc (Ns/m) % CAU SAU m2 = 260 ; % khoi luongcau sau (kg) cL2= 430000; % he so cung Lop cau sau (N/m) kL2= 0 ; % he so giam chan cau sau (Ns/m) cT2= 106000; % he so cung loxo cau sau (N/m) kT2= 7800; % he so giam chan cau sau (Ns/m) % THAN XE Iy= 12060 ; % mo men quan tinh doi voi truc y (kgm^2) M = 5970 ; %[kg]= Khoi luong g = 0*9.81 ; % gia toc trong truong (m/s^2) a = 1.73; % khoang cach tu trong tam den cau truoc (m) b = 1.57; % khoang cach tu trong tam den cau sau (m) L = a + b; % chieu dai co so 14 %================================================================= % DIEU KIEN KHAO SAT %----------------------------------------------------------------- V0= 10 ; %km/h V= V0/3.6; % m/s q0= 0.05 ; % chieu cao map mo = bien do hinh sin (m) s0= 3 ; % Buoc song (m) w = 2*pi*V/s0; % tan so goc thay doi song mat duong (1/s) f= w/(2*pi); % Tan so dao dong tinh theo Hz %================================================================= % Chay Mo phong truc tiep tai day %open Model_daodong_Oto_GAZ_66_OK %sim('Model_daodong_Oto_GAZ_66_OK') open Model_Daodong_Oto_1p2_OK2b sim('Model_Daodong_Oto_1p2_OK2b') %================================================================ c. Kết quả mô phỏng dao động của ô tô tải GAZ 66 với mô hình 1/2 15 16 17 TÀI LIỆU THAM KHẢO [1]. Vũ Đức Lập (1994), Dao động ô tô, Học viện kỹ thuật quân sự. [2]. Nguyễn Phùng Quang (2006), Matlab & Simulink, Nhà xuất bản Khoa học Kỹ thuật, Hà Nội [3]. Vũ Quang Thập (2014), Ứng dụng phần mềm Mtalab Simulink giải các bài toán động lực học trên ô tô, Nhà xuất bản khoa học và Kỹ thuật, Hà Nội [4]. Rajesh Rajamani (2006), Vehicle Dynamics and Control, Springer New York [5]. Rajesh Rajamani (2008), Vehicle Dynamics , Springer New York
File đính kèm:
- bai_giang_mo_hinh_hoa_va_mo_phong_trong_ky_thuat_o_to_nong_v.pdf