Bài giảng Lập trình hướng đối tượng C - Chương 7: Lớp
Chương 7. Lớp
Chương này giới thiệu cấu trúc lớp C++ để định nghĩa các kiểu dữ liệu mới.
Một kiểu dữ liệu mới gồm hai thành phần như sau:
• Đặc tả cụ thể cho các đối tượng của kiểu.
• Tập các thao tác để thực thi các đối tượng.
Ngoài các thao tác đã được chỉ định thì không có thao tác nào khác có
thể điều khiển đối tượng. Về mặt này chúng ta thường nói rằng các thao tác
mô tả kiểu, nghĩa là chúng quyết định cái gì có thể và cái gì không thể xảy ra
trên các đối tượng. Cũng với cùng lý do này, các kiểu dữ liệu thích hợp như
thế được gọi là kiểu dữ liệu trừu tượng (abstract data type) - trừu tượng bởi
vì sự đặc tả bên trong của đối tượng được ẩn đi từ các thao tác mà không
thuộc kiểu.
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Lập trình hướng đối tượng C - Chương 7: Lớp", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Lập trình hướng đối tượng C - Chương 7: Lớp
Chương 7: Lớp 92 Chương 7. Lớp Chương này giới thiệu cấu trúc lớp C++ để định nghĩa các kiểu dữ liệu mới. Một kiểu dữ liệu mới gồm hai thành phần như sau: • Đặc tả cụ thể cho các đối tượng của kiểu. • Tập các thao tác để thực thi các đối tượng. Ngoài các thao tác đã được chỉ định thì không có thao tác nào khác có thể điều khiển đối tượng. Về mặt này chúng ta thường nói rằng các thao tác mô tả kiểu, nghĩa là chúng quyết định cái gì có thể và cái gì không thể xảy ra trên các đối tượng. Cũng với cùng lý do này, các kiểu dữ liệu thích hợp như thế được gọi là kiểu dữ liệu trừu tượng (abstract data type) - trừu tượng bởi vì sự đặc tả bên trong của đối tượng được ẩn đi từ các thao tác mà không thuộc kiểu. Một định nghĩa lớp gồm hai phần: phần đầu và phần thân. Phần đầu lớp chỉ định tên lớp và các lớp cơ sở (base class). (Lớp cơ sở có liên quan đến lớp dẫn xuất và được thảo luận trong chương 8). Phần thân lớp định nghĩa các thành viên lớp. Hai loại thành viên được hỗ trợ: • Dữ liệu thành viên (member data) có cú pháp của định nghĩa biến và chỉ định các đại diện cho các đối tượng của lớp. • Hàm thành viên (member function) có cú pháp của khai báo hàm và chỉ định các thao tác của lớp (cũng được gọi là các giao diện của lớp). C++ sử dụng thuật ngữ dữ liệu thành viên và hàm thành viên thay cho thuộc tính và phương thức nên kể từ đây chúng ta sử dụng dụng hai thuật ngữ này để đặc tả các lớp và các đối tượng. Các thành viên lớp được liệt kê vào một trong ba loại quyền truy xuất khác nhau: • Các thành viên chung (public) có thể được truy xuất bởi tất cả các thành phần sử dụng lớp. • Các thành viên riêng (private) chỉ có thể được truy xuất bởi các thành viên lớp. • Các thành viên được bảo vệ (protected) chỉ có thể được truy xuất bởi các thành viên lớp và các thành viên của một lớp dẫn xuất. Kiểu dữ liệu được định nghĩa bởi một lớp được sử dụng như kiểu có sẵn. Chương 7: Lớp 93 7.1. Lớp đơn giản Danh sách 7.1 trình bày định nghĩa của một lớp đơn giản để đại diện cho các điểm trong không gian hai chiều. Danh sách 7.1 1 2 3 4 5 6 class Point { int xVal, yVal; public: void SetPt (int, int); void OffsetPt (int, int); }; Chú giải 1 Hàng này chứa phần đầu của lớp và đặt tên cho lớp là Point. Một định nghĩa lớp luôn bắt đầu với từ khóa class và theo sau đó là tên lớp. Một dấu { (ngoặc mở) đánh dấu điểm bắt đầu của thân lớp. 2 Hàng này định nghĩa hai dữ liệu thành viên xVal và yVal, cả hai thuộc kiểu int. Quyền truy xuất mặc định cho một thành viên của lớp là riêng (private). Vì thế cả hai xVal và yVal là riêng. 3 Từ khóa này chỉ định rằng từ điểm này trở đi các thành viên của lớp là chung (public). 4-5 Hai hàng này là các hàm thành viên. Cả hai có hai tham số nguyên và một kiểu trả về void. 6 Dấu } (ngoặc đóng) này đánh dấu kết thúc phần thân lớp. Thứ tự trình bày các dữ liệu thành viên và hàm thành viên của một lớp là không quan trọng lắm. Ví dụ lớp trên có thể được viết tương đương như thế này: class Point { public: void SetPt (int, int); void OffsetPt (int, int); private: int xVal, yVal; }; Định nghĩa thật sự của các hàm thành viên thường không là bộ phận của lớp và xuất hiện một cách tách biệt. Danh sách 7.2 trình bày định nghĩa riêng biệt của SetPt và OffsetPt. Chương 7: Lớp 94 Danh sách 7.2 1 2 3 4 5 6 7 8 9 10 void Point::SetPt (int x, int y) { xVal = x; yVal = y; } void Point::OffsetPt (int x, int y) { xVal += x; yVal += y; } Chú giải 1 Định nghĩa của một hàm thành viên thì tương tự như là hàm bình thường. Tên hàm được chỉ rõ trước với tên lớp và một cặp dấu hai chấm kép. Điều này xem SetPt như một thành viên của Point. Giao diện hàm phải phù hợp với định nghĩa giao diện trước đó bên trong lớp (nghĩa là, lấy hai tham số nguyên và có kiểu trả về là void). 3-4 Chú ý là hàm SetPt (là thành viên của Point) có thể tự do tham khảo tới dữ liệu thành viên xVal và yVal. Các hàm không là hàm thành viên không có quyền này. Một khi một lớp được định nghĩa theo cách này, tên của nó bao hàm một kiểu dữ liệu mới cho phép chúng ta định nghĩa các biến của kiểu đó. Ví dụ: Point pt; // pt là một đối tượng của lớp Point pt.SetPt(10,20); // pt được đặt tới (10,20) pt.OffsetPt(2,2); // pt trở thành (12,22) Các hàm thành viên được sử dụng ký hiệu dấu chấm: pt.SetPt(10,20) gọi hàm SetPt của đối tượng pt, nghĩa là pt là một đối số ẩn của SetPt. Bằng cách tạo ra các thành viên riêng xVal và yVal chúng ta phải chắc chắn rằng người sử dụng lớp không thể điều khiển trực tiếp chúng: pt.xVal = 10; // không hợp lệ Điều này sẽ không biên dịch. Ở giai đoạn này, chúng ta cần phân biệt rõ ràng giữa đối tượng và lớp. Một lớp biểu thị một kiểu duy nhất. Một đối tượng là một phần tử của một kiểu cụ thể (lớp). Ví dụ, Point pt1, pt2, pt3; định nghĩa tất cả ba đối tượng (pt1, pt2, và pt3) của cùng một lớp (Point). Các thao tác của một lớp được ứng dụng bởi các đối tượng của lớp đó nhưng không bao giờ được áp dụng trên chính lớp đó. Vì thế một lớp là một khái niệm không có sự tồn tại cụ thể mà chịu sự phản chiếu bởi các đối tượng của nó. Chương 7: Lớp 95 7.2. Các hàm thành viên nội tuyến Việc định nghĩa những hàm thành viên là nội tuyến cải thiện tốc độ đáng kể. Một hàm thành viên được định nghĩa là nội tuyến bằng cách chèn từ khóa inline trước định nghĩa của nó. inline void Point::SetPt (int x,int y) { xVal = x; yVal = y; } Một cách dễ hơn để định nghĩa các hàm thành viên là nội tuyến là chèn định nghĩa của các hàm này vào bên trong lớp. class Point { int xVal, yVal; public: void SetPt (int x,int y) { xVal = x; yVal = y; } void OffsetPt (int x,int y) { xVal += x; yVal += y; } }; Chú ý rằng bởi vì thân hàm được chèn vào nên không cần dấu chấm phẩy sau khai báo hàm. Hơn nữa, các tham số của hàm phải được đặt tên. 7.3. Ví dụ: Lớp Set Tập hợp (Set) là một tập các đối tượng không kể thứ tự và không lặp. Ví dụ này thể hiện rằng một tập hợp có thể được định nghĩa bởi một lớp như thế nào. Để đơn giản chúng ta giới hạn trên hợp các số nguyên với số lượng các phần tử là hữu hạn. Danh sách 7.3 trình bày định nghĩa lớp Set. Danh sách 7.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 #include const maxCard = 100; enum Bool {false, true}; class Set { public: void EmptySet (void){ card = 0; } Bool Member (const int); void AddElem (const int); void RmvElem (const int); void Copy (Set&); Bool Equal (Set&); void Intersect (Set&, Set&); void Union (Set&, Set&); void Print (void); private: int elems[maxCard]; // cac phan tu cua tap hop int card; // so phan tu cua tap hop }; Chương 7: Lớp 96 Chú giải 2 maxCard biểu thị số lượng phần tử tối đa trong tập hợp. 6 EmptySet xóa nội dung tập hợp bằng cách đặt số phần tử tập hợp về 0. 7 Member kiểm tra một số cho trước có thuộc tập hợp hay không. 8 AddElem thêm một phần tử mới vào tập hợp. Nếu phần tử đã có trong tập hợp rồi thì không làm gì cả. Ngược lại thì thêm nó vào tập hợp. Trường hợp mà tập hợp đã tràn thì phần tử không được xen vào. 9 RmvElem xóa một phần tử trong tập hợp. 10 Copy sao chép tập hợp tới một tập hợp khác. Tham số cho hàm này là một tham chiếu tới tập hợp đích. 11 Equal kiểm tra hai tập hợp có bằng nhau hay không. Hai tập hợp là bằng nhau nếu chúng chứa đựng chính xác cùng số phần tử (thứ tự của chúng là không quan trọng). 12 Intersect so sánh hai tập hợp để cho ra tập hợp thứ ba chứa các phần tử là giao của hai tập hợp. Ví dụ, giao của {2,5,3} và {7,5,2} là {2,5}. 13 Union so sánh hai tập hợp để cho ra tập hợp thứ ba chứa các phần tử là hội của hai tập hợp. Ví dụ, hợp của {2,5,3} và {7,5,2} là {2,5,3,7}. 14 Print in một tập hợp sử dụng ký hiệu toán học theo qui ước. Ví dụ, một tập hợp gồm các số 5, 2, và 10 được in là {5,2,10}. 16 Các phần tử của tập hợp được biểu diễn bằng mảng elems. 17 Số phần tử của tập hợp được biểu thị bởi card. Chỉ có các đầu vào bản số đầu tiên trong elems được xem xét là các phần tử hợp lệ. Việc định nghĩa tách biệt các hàm thành viên của một lớp đôi khi được biết tới như là sự cài đặt (implementation) của một lớp. Sự thi công lớp Set là như sau. Bool Set::Member (const int elem) { for (register i = 0; i < card; ++i) if (elems[i] == elem) return true; return false; } void Set::AddElem (const int elem) { if (Member(elem)) return; if (card < maxCard) elems[card++] = elem; else cout << "Set overflow\n"; } void Set::RmvElem (const int elem) { for (register i = 0; i < card; ++i) Chương 7: Lớp 97 if (elems[i] == elem) { for (; i < card-1; ++i) // dich cac phan tu sang trai elems[i] = elems[i+1]; --card; } } void Set::Copy (Set &set) { for (register i = 0; i < card; ++i) set.elems[i] = elems[i]; set.card = card; } Bool Set::Equal (Set &set) { if (card != set.card) return false; for (register i = 0; i < card; ++i) if (!set.Member(elems[i])) return false; return true; } void Set::Intersect (Set &set, Set &res) { res.card = 0; for (register i = 0; i < card; ++i) if (set.Member(elems[i])) res.elems[res.card++] = elems[i]; } void Set::Union (Set &set, Set &res) { set.Copy(res); for (register i = 0; i < card; ++i) res.AddElem(elems[i]); } void Set::Print (void) { cout << "{"; for (int i = 0; i < card-1; ++i) cout << elems[i] << ","; if (card > 0) // khong co dau , sau phan tu cuoi cung cout << elems[card-1]; cout << "}\n"; } Hàm main sau đây tạo ra ba tập đối tượng Set và thực thi một vài hàm thành viên của nó. int main (void) { Set s1, s2, s3; s1.EmptySet(); s2.EmptySet(); s3.EmptySet(); s1.AddElem(10); s1.AddElem(20); s1.AddElem(30); s1.AddElem(40); s2.AddElem(30); s2.AddElem(50); s2.AddElem(10); s2.AddElem(60); Chương 7: Lớp 98 cout << "s1 = "; s1.Print(); cout << "s2 = "; s2.Print(); s2.RmvElem(50); cout << "s2 - {50} = "; s2.Print(); if (s1.Member(20)) cout << "20 is in s1\n"; s1.Intersect(s2,s3); cout << "s1 intsec s2 = "; s3.Print(); s1.Union(s2,s3); cout << "s1 union s2 = "; s3.Print(); if (!s1.Equal(s2)) cout s2\n"; return 0; } Khi chạy chương trình sẽ cho kết quả như sau: s1 = {10,20,30,40} s2 = {30,50,10,60} s2 - {50} = {30,10,60} 20 is in s1 s1 intsec s2 = {10,30} s1 union s2 = {30,10,60,20,40} s1 s2 7.4. Hàm xây dựng (Constructor) Hoàn toàn có thể định nghĩa và khởi tạo các đối tượng của một lớp ở cùng một thời điểm. Điều này được hỗ trợ bởi các hàm đặc biệt gọi là hàm xây dựng (constructor). Một hàm xây dựng luôn có cùng tên với tên lớp của nó. Nó không bao giờ có một kiểu trả về rõ ràng. Ví dụ, class Point { int xVal, yVal; public: Point (int x,int y) {xVal = x; yVal = y;} // constructor void OffsetPt (int,int); }; là một định nghĩa có thể của lớp Point, trong đó SetPt đã được thay thế bởi một hàm xây dựng được định nghĩa nội tuyến. Bây giờ chúng ta có thể định nghĩa các đối tượng kiểu Point và khởi tạo chúng một lượt. Điều này quả thật là ép buộc đối với những lớp chứa các hàm xây dựng đòi hỏi các đối số: Point pt1 = Point(10,20); Point pt2; // trái luật Hàng thứ nhất có thể được đặc tả trong một hình thức ngắn gọn. Point pt1(10,20); Chương 7: Lớp 99 Một lớp có thể có nhiều hơn một hàm xây dựng. Tuy nhiên, để tránh mơ hồ thì mỗi hàm xây dựng phải có một dấu hiệu duy nhất. Ví dụ, class Point { int xVal, yVal; public: Point (int x, int y) { xVal = x; yVal = y; } Point (float, float); // các tọa độ cực Point (void) { xVal = yVal = 0; } // gốc void OffsetPt (int, int); }; Point::Point (float len, float angle) // các tọa độ cực { xVal = (int) (len * cos(angle)); yVal = (int) (len * sin(angle)); } có ba hàm xây dựng khác nhau. Một đối tượng có kiểu Point có thể được định nghĩa sử dụng bất kỳ hàm nào trong các hàm này: Point pt1(10,20); // tọa độ Đê-cát-tơ Point pt2(60.3,3.14); // tọa độ cực Point pt3; // gốc Lớp Set có thể được cải tiến bằng cách sử dụng một hàm xây dựng thay vì EmptySet: class Set { public: Set (void) { card = 0; } //... }; Điều này tạo thuận lợi cho các lập trình viên không cần phải nhớ gọi EmptySet nữa. Hàm xây dựng đảm bảo rằng mọi tập hợp là rỗng vào lúc ban đầu. Lớp Set có thể được cải tiến hơn nữa bằng cách cho phép người dùng điều khiển kích thước tối đa của tập hợp. Để làm điều này chúng ta định nghĩa elems như một con trỏ số nguyên hơn là mảng số nguyên. Hàm xây dựng sau đó có thể được cung cấp một đối số đặc tả kích thước tối đa mong muốn. Nghĩa là maxCard sẽ không còn là hằng được dùng cho tất cả các đối tượng Set nữa mà chính nó trở thành một thành viên dữ liệu: class Set { public: Set (const int size); //... private: int *elems; // cac phan tu tap hop int maxCard; // so phan tu toi da int card; // so phan tu }; Chương 7: Lớp 100 Hàm xây dựng dễ dàng cấp phát một mảng động với kích thước mong muốn và khởi tạo giá trị phù hợp cho maxCard và card: Set::Set (const int size) { elems = new int[size]; maxCard = size; card = 0; } Bây giờ có thể định nghĩa các tập hợp có các kích thước tối đa khác nhau: Set ages(10), heights(20), primes(100); Chúng ta cần lưu ý rằng một hàm xây dựng của đối tượng được ứng dụng khi đối tượng được tạo ra. Điều này phụ thuộc vào phạm vi của đối tượng. Ví dụ, một đối tượng toàn cục được tạo ra ngay khi sự thực thi chương trình bắt đầu; một đối tượng tự động được tạo ra khi phạm vi của nó được đăng ký; và một đối tượng động được tạo ra khi toán tử new được áp dụng tới nó. 7.5. Hàm hủy (Destructor) Như là một hàm xây dựng được dùng để khởi tạo một đối tượng khi nó được tạo ra, một hàm hủy được dùng để dọn dẹp một đối tượng ngay trước khi nó được thu hồi. Hàm hủy luôn luôn có cùng tên với chính tên lớp của nó nhưng được đi đầu với ký tự ~. Không giống các hàm xây dựng, mỗi lớp chỉ có nhiều nhất một hàm hủy. Hàm hủy không nhận bất kỳ đối số nào và không có một kiểu trả về rõ ràng. Thông thường các hàm hủy thường hữu ích và cần thiết cho các lớp chứa dữ liệu thành viên con trỏ. Các dữ liệu thành viên con trỏ trỏ tới các khối bộ nhớ được cấp phát từ lớp. Trong các trường hợp như thế thì việc giải phóng bộ nhớ đã được cấp phát cho các con trỏ thành viên là cực kỳ quan trọng trước khi đối tượng được thu hồi. Hàm hủy có thể làm công việc như thế. Ví dụ, phiên bản sửa lại của lớp Set sử dụng một mảng được cấp phát động cho các thành viên elems. Vùng nhớ này nên được giải phóng bởi một hàm hủy: class Set { public: Set (const int size); ~Set (void) {delete elems;} // destructor //... private: int *elems; // cac p ... ợng của một lớp Thành viên dữ liệu của một lớp có thể là kiểu người dùng định nghĩa, có nghĩa là một đối tượng của một lớp khác. Ví dụ, lớp Rectangle có thể được định nghĩa bằng cách sử dụng hai thành viên dữ liệu Point đại diện cho góc trên bên trái và góc dưới bên phải của hình chữ nhật: class Rectangle { public: Rectangle (int left, int top, int right, int bottom); //... private: Point topLeft; Point botRight; }; Hàm xây dựng cho lớp Rectangle cũng có thể khởi tạo hai thành viên đối tượng của lớp. Giả sử rằng lớp Point có một hàm xây dựng thì điều này được thực hiện bằng cách thêm topLeft và botRight vào danh sách khởi tạo thành viên của hàm xây dựng cho lớp Rectangle: Rectangle::Rectangle (int left, int top, int right, int bottom) : topLeft(left,top), botRight(right,bottom) { } Nếu hàm xây dựng của lớp Point không có tham số hoặc nếu nó có các đối số mặc định cho tất cả tham số của nó thì danh sách khởi tạo thành viên ở trên có thể được bỏ qua. Thứ tự khởi tạo thì luôn là như sau. Trước hết hàm xây dựng cho topLeft được triệu gọi và theo sau là hàm xây dựng cho botRight, và cuối cùng là hàm xây dựng cho chính lớp Rectangle. Hàm hủy đối tượng luôn theo hướng ngược Chương 7: Lớp 110 lại. Trước tiên là hàm xây dựng cho lớp Rectangle (nếu có) được triệu gọi, theo sau là hàm hủy cho botRight, và cuối cùng là cho topLeft. Lý do mà topLeft được khởi tạo trước botRight không phải vì nó xuất hiện trước trong danh khởi tạo thành viên mà vì nó xuất hiện trước botRight trong chính lớp đó. Vì thế, định nghĩa hàm xây dựng như sau sẽ không thay đổi thứ tự khởi tạo (hoặc hàm hủy): Rectangle::Rectangle (int left, int top, int right, int bottom) : botRight(right,bottom), topLeft(left,top) { } 7.15.Mảng các đối tượng Mảng các kiểu người dùng định nghĩa được định nghĩa và sử dụng nhiều theo cùng phương thức như mảng các kiểu xây dựng sẳn. Ví dụ, hình ngũ giác có thể được định nghĩa như mảng của 5 điểm: Point pentagon[5]; Định nghĩa này giả sử rằng lớp Point có một hàm xây dựng không đối số (nghĩa là một hàm xây dựng có thể được triệu gọi không cần đối số). Hàm xây dựng được áp dụng tới mỗi phần tử của mảng. Mảng cũng có thể được khởi tạo bằng cách sử dụng bộ khởi tạo mảng thông thường. Mỗi mục trong danh sách khởi tạo có thể triệu gọi hàm xây dựng với các đối số mong muốn. Khi bộ khởi tạo có ít mục hơn kích thước mảng, các phần tử còn lại được khởi tạo bởi hàm xây dựng không đối số. Ví dụ, Point pentagon[5] = { Point(10,20), Point(10,30), Point(20,30), Point(30,20) }; khởi tạo bốn phần tử của mảng pentagon tới các điểm cụ thể, và phần tử sau cùng được khởi tạo tới (0,0). Khi hàm xây dựng có thể được triệu gọi với một đối số đơn, nó vừa đủ để đặc tả đối số. Ví dụ, Set sets[4] = {10, 20, 20, 30}; là một phiên bản ngắn gọn của: Set sets[4] = {Set(10), Set(20), Set(20), Set(30)}; Mảng các đối tượng cũng có thể được tạo ra động bằng cách sử dụng toán tử new: Point *petagon = new Point[5]; Chương 7: Lớp 111 Sau cùng, khi mảng được xóa bằng cách sử dụng toán tử delete thì một cặp dấu ngoặc vuông ([]) nên được chèn vào: delete [] pentagon; // thu hồi tất cả các phần tử của mảng Nếu không sử dụng cặp [] được chèn vào thì toán tử delete sẽ không có cách nào biết rằng pentagon biểu thị một mảng các điểm chứ không phải là một mảng đơn. Hàm hủy (nếu có) được ứng dụng tới các phần tử của mảng theo thứ tự ngược lại trước khi mảng được xóa. Việc loại bỏ cặp [] sẽ làm cho hàm hủy được áp dụng chỉ tới phần tử đầu tiên của mảng. delete pentagon; // thu hồi chỉ phần tử đầu tiên! Vì các đối tượng của mảng động không thể được khởi tạo rõ ràng ở thời điểm tạo ra, lớp phải có một hàm xây dựng không đối số để điều khiển việc khởi tạo không tường minh. Khi việc khởi tạo không tường minh này không đủ thông tin thì sau đó lập trình viên có thể khởi tạo lại cụ thể cho từng phần tử của mảng: pentagon[0].Point(10, 20); pentagon[1].Point(10, 30); //... Mảng các đối tượng động được sử dụng trong các tình huống mà chúng ta không thể biết trước kích thước của mảng. Ví dụ, một lớp đa giác tổng quát không có cách nào biết được một hình đa giác có chính xác bao nhiêu đỉnh: class Polygon { public: //... private: Point *vertices; // các đỉnh int nVertices; // số các đỉnh }; 7.16.Phạm vi lớp Một lớp mở đầu phạm vi lớp rất giống với cách một hàm (hay khối) mở đầu một phạm vi cục bộ. Tất cả các thành viên của lớp phụ thuộc vào phạm vi lớp và ẩn đi các thực thể với các tên giống hệt trong phạm vi.Ví dụ, trong int fork (void); // fork hệ thống class Process { int fork (void); //... }; hàm thành viên fork ẩn đi hàm hệ thống toàn cục fork. Hàm thành viên có thể tham khảo tới hàm hệ thống toàn cục bằng cách sử dụng toán tử phạm vi đơn hạng: int Process::fork (void) Chương 7: Lớp 112 { int pid = ::fork(); // sử dụng hàm fork hệ thống toàn cục //... } Lớp chính nó có thể được định nghĩa ở bất kỳ một trong ba phạm vi có thể: • Ở phạm vi toàn cục. Điều này dẫn tới một lớp toàn cục bởi vì nó có thể được tham khảo tới bởi tất cả phạm vi khác. Đại đa số các lớp C++ (kể cả tất cả các ví dụ được trình bày đến thời điểm này) được định nghĩa ở phạm vi toàn cục. • Ở phạm vi lớp của lớp khác. Điều này dẫn tới một lớp lồng nhau trong đó lớp được chứa đựng bởi lớp khác. • Ở phạm vi cục bộ của một khối hay một hàm. Điều này dẫn đến một lớp cục bộ trong đó lớp được chứa đựng hoàn toàn bởi một khối hoặc một hàm. Lớp lồng nhau là hữu dụng khi một lớp được sử dụng chỉ bởi một lớp khác. Ví dụ, class Rectangle { // một lớp lồng nhau public: Rectangle (int, int, int, int); //.. private: class Point { public: Point (int, int); private: int x, y; }; Point topLeft, botRight; }; định nghĩa lớp Point lồng bên trong lớp Rectangle. Các hàm thành viên của lớp Point có thể được định nghĩa hoặc nội tuyến (inline) ở bên trong lớp Point hoặc ở phạm vi toàn cục. Phạm vi toàn cục sẽ đòi hỏi thêm các tên của hàm thành viên bằng cách đặt trước chúng với Rectangle:: Rectangle::Point::Point (int x, int y) { //... } Một lớp lồng nhau vẫn còn có thể được truy xuất bên ngoài lớp bao bọc của nó bằng cách chỉ định đầy đủ tên lớp. Ví dụ sau là hợp lệ ở bất kỳ phạm vi nào (giả sử rằng Point được tạo ra chung (public) ở bên trong Rectangle): Rectangle::Point pt(1,1); Lớp cục bộ hữu dụng khi một lớp được sử dụng chỉ bởi một hàm – hàm toàn cục hay hàm thành viên – hoặc thậm chí chỉ là một khối. Ví dụ, Chương 7: Lớp 113 void Render (Image &image) { class ColorTable { public: ColorTable (void) { /* ... */ } AddEntry (int r, int g, int b) { /* ... */ } //... }; ColorTable colors; //... } định nghĩa ColorTable như là một lớp cục bộ tới Render. Không giống như các lớp lồng nhau, một lớp cục bộ không thể truy xuất bên ngoài phạm vi nó được định nghĩa. Vì thế hàng sau là không hợp lệ ở phạm vi toàn cục: ColorTable ct; // không được định nghĩa! Một lớp cục bộ phải được định nghĩa đầy đủ bên trong phạm vi mà nó xuất hiện. Vì thế, tất cả các hàm thành viên của nó cần được định nghĩa nội tuyến ở bên trong lớp. Điều này ngụ ý rằng một phạm vi cục bộ không phù hợp cho định nghĩa bất cứ cái gì ngoại trừ các lớp thật là đơn giản. 7.17.Cấu trúc và hợp Cấu trúc (structure) là tất cả các thành viên của nó được định nghĩa mặc định là chung (public). (Nhớ rằng tất cả các thành viên của lớp được định nghĩa mặc định là riêng (private)). Các cấu trúc được định nghĩa bằng cách sử dụng cùng cú pháp như các lớp ngoại trừ từ khóa struct được sử dụng thay vì class. Ví dụ, struct Point { Point(int, int); void OffsetPt(int, int); int x, y; }; đương đương với: class Point { public: Point(int, int); void OffsetPt(int, int); int x, y; }; Cấu trúc struct được bắt nguồn từ ngôn ngữ C, nó chỉ có thể chứa đựng các thành viên dữ liệu. Nó đã được giữ lại cho khả năng tương thích về sau. Trong C, một cấu trúc có thể có một bộ khởi tạo với cú pháp tương tự như là cú pháp của một mảng. C++ cho phép các bộ khởi tạo như thế dành cho các Chương 7: Lớp 114 cấu trúc và các lớp mà tất cả các thành viên dữ liệu của chúng là chung (public): class Employee { public: char *name; int age; double salary; }; Employee emp = {"Jack", 24, 38952.25}; Bộ khởi tạo gồm các giá trị được gán cho các thành viên dữ liệu của cấu trúc (hoặc lớp) theo thứ tự chúng xuất hiện. Các kiểu khởi tạo này phần lớn được thay thế bằng các hàm xây dựng. Vả lại, nó không thể được sử dụng với lớp mà có hàm xây dựng. Hợp (union) là một lớp mà tất cả các thành viên dữ liệu của nó được ánh xạ tới cùng địa chỉ ở bên trong đối tượng của nó (hơn là liên tiếp như trong trường hợp của lớp). Vì thế kích thước đối tượng của một hợp là kích thước thành viên dữ liệu lớn nhất của nó. Hợp được sử dụng chủ yếu cho các tình huống mà một đối tượng có thể chiếm lấy các giá trị của các kiểu khác nhưng chỉ một giá trị ở một thời điểm. Ví dụ, xem xét một trình thông dịch cho một ngôn ngữ lập trình đơn giản được gọi là P hỗ trợ cho một số kiểu dữ liệu như là: số nguyên, số thực, chuỗi, và danh sách. Một giá trị trong ngôn ngữ lập trình này có thể được định nghĩa kiểu: union Value { long integer; double real; char *string; Pair list; //... }; trong đó Pair chính nó là một kiểu người dùng định nghĩa cho việc tạo ra các danh sách: class Pair { Value *head; Value *tail; //... }; Giả sử rằng kiểu long là 4 byte, kiểu double là 8 byte, và con trỏ là 4 byte, đối tượng thuộc kiểu Value có thể chính xác 8 byte, nghĩa là cùng kích thước với kiểu double hay đối tượng kiểu Pair (bằng với hai con trỏ). Một đối tượng trong ngôn ngữ P có thể được biểu diễn bởi lớp, class Object { private: enum ObjType {intObj, realObj, strObj, listObj}; ObjType type; // kiểu đối tượng Value val; // giá trị của đối tượng //... }; trong đó type cung cấp cách thức ghi nhận kiểu của giá trị mà đối tượng giữ hiện tại. Ví dụ, khi type được đặt tới strObj, val.string được sử dụng để tham khảo tới giá trị của nó. Bởi vì chỉ có một cách duy nhất mà các thành viên dữ liệu được ánh xạ tới bộ nhớ nên một hợp không thể có thành viên dữ liệu tĩnh hay thành viên dữ liệu mà yêu cầu một hàm xây dựng. Giống như cấu trúc, tất cả các thành viên của hợp được định nghĩa mặc định là chung (public). Các từ khóa private, public, và protected có thể được sử dụng bên trong struct hoặc union chính xác theo cùng cách mà chúng được sử dụng bên trong một lớp để định nghĩa các thành viên riêng, chung, và được bảo vệ. 7.18.Các trường bit Đôi khi chúng ta muốn điều khiển trực tiếp một đối tượng ở mức bit sao cho nhiều hạng mục dữ liệu riêng có thể được đóng gói thành một dòng bit mà không còn lo lắng về các biên của từ hay byte. Ví dụ trong truyền dữ liệu, dữ liệu được truyền theo từng đơn vị rời rạc gọi là các gói tin (packets). Ngoài phần dữ liệu cần truyền thì mỗi gói tin còn chứa đựng một phần header gồm các thông tin về mạng hỗ trợ cho việc quản lý và truyền các gói tin qua mạng. Để làm giảm thiểu chi phí truyền nhận chúng ta mong muốn giảm thiểu không gian chiếm bởi phần header. Hình 7.1 minh họa các trường của header được đóng gói thành các bit gần kề để đạt được mục đích này. Hình 7.1 Các trường header của một gói. type acknowledge channel sequenceNo moreData Các trường này có thể được biểu diễn thành các thành viên dữ liệu trường bit của một lớp Packet. Một trường bit có thể được định nghĩa thuộc kiểu int hoặc kiểu unsigned int: typedef unsigned int Bit; class Packet { Bit type : 2; // rộng 2 bit Bit acknowledge : 1; // rộng 1 bit Bit channel : 4; // rộng 4 bit Bit sequenceNo : 4; // rộng 4 bit Chương 7: Lớp 115 Chương 7: Lớp 116 Bit moreData : 1; // rộng 1 bit //... }; Một trường bit được tham khảo giống như là tham khảo tới bất kỳ thành viên dữ liệu nào khác. Bởi vì một trường bit không nhất thiết bắt đầu trên một biến của byte nên việc lấy địa chỉ của nó là không hợp lệ. Với lý do này, một trường bit không được định nghĩa là tĩnh (static). Sử dụng bảng liệt kê có thể dễ dàng làm việc với các trường bit hơn. Ví dụ, từ bảng liệt kê cho trước enum PacketType {dataPack, controlPack, supervisoryPack}; enum Bool {false, true}; chúng ta có thể viết: Packet p; p.type = controlPack; p.acknowledge = true; Bài tập cuối chương 7 7.1 Giải thích tại sao các tham số của các hàm thành viên Set được khai báo như là các tham chiếu. 7.2 Định nghĩa một lớp có tên là Complex để biểu diễn các số phức. Một số phức có hình thức tổng quát là a + bi, trong đó a là phần thực và b là phần ảo ( i thay cho ảo). Các quy luật toán học trên số phức như sau: (a + bi) + (c + di) = (a + c) + (b + d)i (a + bi) – (c + di) = (a + c) – (b + d)i (a + bi) * (c + di) = (ac – bd) + (bc + ad)i Định nghĩa các thao tác này như là các hàm thành viên của lớp Complex. 7.3 Định nghĩa một lớp có tên là Menu sử dụng danh sách liên kết của các chuỗi để biểu diễn menu với nhiều chọn lựa. Sử dụng một lớp lồng nhau tên là Option để biểu diễn tập hợp các phần tử. Định nghĩa một hàm xây dựng, hàm hủy, và các hàm thành viên sau cho lớp Menu: • Insert chèn một chọn lựa mới vào một vị trí cho trước. Cung cấp một đối số mặc định sao cho mục chọn được nối vào ở điểm cuối. • Delete xóa một chọn lựa tồn tại. • Choose hiển thị menu và mời người dùng chọn một chọn lựa. 7.4 Định nghĩa lại lớp Set như là một danh sách liên kết sao cho không có giới hạn về số lượng các phần tử một tập hợp có thể có. Sử dụng một lớp lồng nhau tên là Element để biểu diễn tập hợp các phần tử. Chương 7: Lớp 117 7.5 Định nghĩa một lớp tên là Sequence để lưu trữ các chuỗi đã được sắp xếp. Định nghĩa một hàm xây dựng, một hàm hủy, và các hàm thành viên sau cho lớp Sequence: • Insert chèn một chuỗi mới vào vị trí sắp xếp của nó. • Delete xóa một chuỗi hiện có. • Find tìm tuần tự với một chuỗi cho trước và trả về true nếu tìm được và false nếu không tìm được. • Print in ra các chuỗi tuần tự. 7.6 Định nghĩa lớp tên là BinTree để lưu trữ các chuỗi đã được sắp xếp như là một cây nhị phân. Định nghĩa cùng tập các hàm thành viên như đối với lớp Sequence ở bài tập trước. 7.7 Định nghĩa một hàm thành viên cho lớp BinTree để chuyển một chuỗi thành cây nhị phân như là bạn của lớp Sequence. Sử dụng hàm này để định nghĩa một hàm xây dựng cho lớp BinTree nhận một chuỗi làm đối số. 7.8 Thêm một thành viên dữ liệu ID là số nguyên vào lớp Menu (Bài tập 7.3) sao cho tất cả các đối tượng menu được đánh số tuần tự bắt đầu từ 0. Định nghĩa một hàm thành viên nội tuyến trả về số ID. Bạn sẽ theo dõi ID cuối cùng được cấp phát như thế nào? 7.9 Sửa đổi lớp Menu sao cho chọn lựa chính nó có thể là một menu, bằng cách ấy cho phép các menu lồng nhau.
File đính kèm:
- bai_giang_lap_trinh_huong_doi_tuong_c_chuong_7_lop.pdf