Bài giảng Cơ sở tự động học - Phạm Văn Tấn
I. ĐẠI CƯƠNG
Hồi tiếp (feedback) là một trong những tiến trình căn bản nhất trong tự nhiên. Nó hiện
diện trong hầu hết các hệ thống động, kể cả trong bản thân sinh vật, trong máy móc, giữa con
người và máy móc Tuy nhiên, khái niệm về hồi tiếp được dùng nhiều trong kỹ thuật. Do
đó, lý thuyết về các hệ thống tự điều khiển (automatic control systems) được phát triển như là
một ngành học kỹ thuật cho việc phân tích, thiết kế các hệ thống có điều khiển tự động và
kiểm soát tự động. Rộng hơn, lý thuyết đó cũng có thể áp dụng trực tiếp cho việc thiết lập và
giải quyết các vấn đề thuộc nhiều lĩnh vực khác nhau, không những cho vật lý học, toán học
mà còn cho cả các ngành khác như: sinh vật học, kinh tế học, xã hội học,
Hiện nay, hệ thống tự điều khiển đã đảm đương một vai trò quan trọng trong sự phát
triển và tiến bộ của công nghệ mới. Thực tế, mỗi tình huống trong sinh hoạt hằng ngày của
chúng ta đều có liên quan đến một vài loại điều khiển tự động: máy nướng bánh, máy giặt, hệ
thống audio-video . Trong những cơ quan lớn hay các xưởng sản xuất, để đạt hiệu suất tối
đa trong việc tiêu thụ điện năng, các lò sưỡi và các máy điều hoà không khí đều được kiểm
soát bằng computer. Hệ thống tự điều khiển được thấy một cách phong phú trong tất cả các
phân xưởng sản xuất : Kiểm tra chất lượng sản phẩm, dây chuyền tự động, kiểm soát máy
công cụ. Lý thuyết điều khiển không thể thiếu trong các ngành đòi hỏi tính tự động cao như :
kỹ thuât không gian và vũ khí, người máy và rất nhiều thứ khác nữa.
Ngoài ra, có thể thấy con người là một hệ thống điều khiển rất phức tạp và thú vị.
Ngay cả việc đơn giản như đưa tay lấy đúng một đồ vật, là một tiến trình tự điều khiển đã xãy
ra. Quy luật cung cầu trong kinh tế học, cũng là một tiến trình tự điều khiển
Tóm tắt nội dung tài liệu: Bài giảng Cơ sở tự động học - Phạm Văn Tấn
Cơ Sở Tự Động Học Phạm Văn Tấn Chương I Nhập Môn Trang I.1 Chương I: NHẬP MÔN • ĐẠI CƯƠNG. • CÁC ĐỊNH NGHĨA. • CÁC LOẠI HỆ THỐNG ĐIỀU KHIỂN Cơ Sở Tự Động Học Phạm Văn Tấn I. ĐẠI CƯƠNG Hồi tiếp (feedback) là một trong những tiến trình căn bản nhất trong tự nhiên. Nó hiện diện trong hầu hết các hệ thống động, kể cả trong bản thân sinh vật, trong máy móc, giữa con người và máy móc Tuy nhiên, khái niệm về hồi tiếp được dùng nhiều trong kỹ thuật. Do đó, lý thuyết về các hệ thống tự điều khiển (automatic control systems) được phát triển như là một ngành học kỹ thuật cho việc phân tích, thiết kế các hệ thống có điều khiển tự động và kiểm soát tự động. Rộng hơn, lý thuyết đó cũng có thể áp dụng trực tiếp cho việc thiết lập và giải quyết các vấn đề thuộc nhiều lĩnh vực khác nhau, không những cho vật lý học, toán học mà còn cho cả các ngành khác như: sinh vật học, kinh tế học, xã hội học, Hiện nay, hệ thống tự điều khiển đã đảm đương một vai trò quan trọng trong sự phát triển và tiến bộ của công nghệ mới. Thực tế, mỗi tình huống trong sinh hoạt hằng ngày của chúng ta đều có liên quan đến một vài loại điều khiển tự động: máy nướng bánh, máy giặt, hệ thống audio-video ... Trong những cơ quan lớn hay các xưởng sản xuất, để đạt hiệu suất tối đa trong việc tiêu thụ điện năng, các lò sưỡi và các máy điều hoà không khí đều được kiểm soát bằng computer. Hệ thống tự điều khiển được thấy một cách phong phú trong tất cả các phân xưởng sản xuất : Kiểm tra chất lượng sản phẩm, dây chuyền tự động, kiểm soát máy công cụ. Lý thuyết điều khiển không thể thiếu trong các ngành đòi hỏi tính tự động cao như : kỹ thuât không gian và vũ khí, người máy và rất nhiều thứ khác nữa. Ngoài ra, có thể thấy con người là một hệ thống điều khiển rất phức tạp và thú vị. Ngay cả việc đơn giản như đưa tay lấy đúng một đồ vật, là một tiến trình tự điều khiển đã xãy ra. Quy luật cung cầu trong kinh tế học, cũng là một tiến trình tự điều khiển II. CÁC ĐỊNH NGHĨA. 1. Hệ thống điều khiển: Là một sự sắp xếp các bộ phận vật lý, phối hợp, liên kết nhau, cách sao để điều khiển, kiểm soát, hiệu chỉnh và sửa sai chính bản thân nó hoặc để nó điều khiển một hệ thống khác. Một hệ thống điều khiển có thể được miêu tả bởi các thành phần cơ bản (H.1_1). Đối tượng để điều khiển (chủ đích). Bộ phận điều khiển. Kết quả. Chương I Nhập Môn Trang I.2 Kết quả Chủ đích Bộ phận Điều khiển (a) H.1_1 : Các bộ phận cơ bản của hệ thống điều khiển. Outputs c Inputs u Bộ phận Điều khiển (b) Cơ Sở Tự Động Học Phạm Văn Tấn Ba thành phần cơ bản đó có thể được nhận dạng như ở ( H.1_1). Các inputs của hệ thống còn được gọi là tín hiệu tác động (actuating signals ) và các outputs được hiểu như là các biến được kiểm soát (controlled variables ). Một thí dụ đơn giản, có thể mô tả như (H.1_1) là sự lái xe ôtô. Hướng của hai bánh trước được xem như là biến được kiểm soát c, hay outputs. Góc quay của tay lái là tín hiệu tác động u, hay input. Hệ thống điều khiển trong trường hợp này bao gồm các cơ phận lái và sự chuyển dịch của toàn thể chiếc xe, kể cả sự tham gia của người lái xe. Tuy nhiên, nếu đối tượng để điều khiển là vận tốc xe, thì áp suất tác động tăng lên bộ gia tốc là input và vận tốc xe là output. Nói chung, có thể xem hệ thống điều khiển xe ôtô là một hệ thống điều khiển hai inputs (lái và gia tốc) và hai outputs (hướng và vận tốc). Trong trường hợp này, hai inputs và hai outputs thì độc lập nhau. Nhưng một cách tổng quát, có những hệ thống mà ở đó chúng liên quan nhau. Các hệ thống có nhiều hơn một input và một output được gọi là hệ thống nhiều biến. 2.Hệ điều khiển vòng hở (open_loop control system). Còn gọi là hệ không hồi tiếp (Nonfeedback System), là một hệ thống trong đó sự kiểm soát không tuỳ thuộc vào output. Những thành phần của hệ điều khiển vòng hở thường có thể chia làm hai bộ phận: bộ điều khiển (controller) và thiết bị xử lý như (H.1_2). Tín hiệu tác động u Tham khảo r Controller Thiết bị Biến được kiểm soát c Hình H.1_2 : Các bộ phận của một hệ điều khiển vòng hở. Một tín hiệu vào, hay lệnh điều khiển hay tín hiệu tham khảo (Reference) r đưa vào controller. Tín hiệu ra của nó là tín hiệu tác động u, sẽ kiểm soát tiến trình xử lý sao cho biến c sẽ hoàn tất được vài tiêu chuẩn đặt trước ở ngõ vào. Trong những trường hợp đơn giản, controller có thể là một mạch khuếch đại, những cơ phận nối tiếp hoặc những thứ khác, tuỳ thuộc vào loại hệ thống. Trong các bộ điều khiển điện tử, controller có thể là một microprocessor. Thí dụ : Một máy nướng bánh có gắn timer để ấn định thời gian tắt và mở máy.Với một lượng bánh nào đó, người dùng phải lượng định thời gian nướng cần thiết để bánh chín, bằng cách chọn lựa thời gian trên timer. Đến thời điểm đã chọn trước, timer điều khiển tắt bộ nung. Chương I Nhập Môn Trang I.3 r (Độ chín mong muốn) Hình H.1_3: Thí dụ về hệ điều khiển vòng hở. Nhiễu Phá rối (Độ chín thực tế) Timer Bộ nung c (Chọn lựa Thời gian) Cơ Sở Tự Động Học Phạm Văn Tấn Dễ thấy ngay rằng một hệ thống điều khiển như vậy có độ tin cậy không cao.Tín hiệu tham khảo được đặt trước, còn đáp ứng ở ngõ ra thì có thể thay đổi theo điều kiện xung quanh, hoặc nhiễu. Muốn đưa đáp ứng c đến trị giá tham khảo r, người dùng phải qui chuẩn lại bằng cách chọn timer lại. 3. Hệ điều khiển vòng kín (closed – loop control system). Còn gọi là hệ điều khiển hồi tiếp (feedback control system). Để điều khiển được chính xác, tín hiệu đáp ứng c(t) sẽ được hồi tiếp và so sánh với tín hiệu tham khảo r ở ngỏ vào. Một tín hiệu sai số (error) tỷ lệ với sự sai biệt giữa c và r sẽ được đưa đến controller để sửa sai. Một hệ thống với một hoặc nhiều đường hồi tiếp như vậy gọi là hệ điều khiển vòng kín. (Hình H.1_4) H.1_4 : Hệ điều khiển vòng kín. _ + Controller Thiết bị Bộ chuyển năng C u e r Hồi tiếp Nhiễu phá rối Phân tích saibiệt Trở lại ví dụ về máy nướng bánh. Giả sử bộ nung cấp nhiệt đều các phía của bánh và chất lượng của bánh có thể xác định bằng màu sắc của nó. Một sơ đồ được đơn giản hoá áp dụng nguyên tắc hồi tiếp cho máy nướng bánh tự động trình bày như (H.1_5). Gương Đường hồi tiếp ~ SW Relay Bộ phân tích màu Nút chỉnh màu Bánh H.1_5 : Máy nướng bánh tự động Chương I Nhập Môn Trang I.4 Cơ Sở Tự Động Học Phạm Văn Tấn Ban đầu, máy nướng được qui chuẩn với chất lượng bánh, bằng cách đặt nút chỉnh màu. Không cần phải chỉnh lại nếu như không muốn thay đổi tiêu chuẩn nướng. Khi SW đóng, bánh sẽ được nướng, cho đến khi bộ phân tích màu "thấy" được màu mong muốn. Khi đó SW tự động mở, do tác động của đường hồi tiếp (mạch điện tử điều khiển relay hay đơn giản là một bộ phận cơ khí). H.1_6. là sơ đồ khối mô tả hệ thống trên. H.1_6 : Sơ đồ khối máy nướng bánh tự động C r Màu Mong muốn Phân Tích màu Mở Đóng u Máy nướng Bánh Màu Bánh Thực tế + - Controller Relay SW Gương Một thí dụ khác về hệ thống điều khiển vòng kín như hình H.1_7: hệ thống điều khiển máy đánh chữ điện tử (Electronic Typewriter). Hồi tiếp Bàn phím Vi Xử lý KĐ Công suất DC motor Mã hoá Vị trí Bánh xe in θr θc θr H.1_7: Hệ thống điều khiển máy đánh chữ điện tử. Bánh xe in (printwheel) có khoảng 96 hay 100 ký tự, được motor quay,đặt vị trí của ký tự mong muốn đến trước búa gõ để in. Sự chọn lựa ký tự do người sử dụng gõ lên bàn phím. Khi một phím nào đó được gõ, một lệnh cho bánh xe in quay từ vị trí hiện hành đến vị trí kế tiếp được bắt đầu. Bộ vi xử lý tính chiều và khoảng cách phải vượt qua của bánh xe, và gửi một tín hiệu điều khiển đến mạch khuếch đại công suất. Mạch này điều khiển motor quay để thúc bánh xe in. Vị trí bánh xe in được phân tích bởi một bộ cảm biến vị trí (position sensor). Tín hiệu ra được mã hóa của nó được so sánh với vị trí mong muốn trong bộ vi xử lý. Như vậy motor được điều khiển sao cho nó thúc bánh xe in quay đến đúng vị trí mong muốn. Trong thực tế, những tín hiệu điều khiển phát ra bởi vi xử lý sẽ có thể thúc bánh xe in từ một vị trí này đến vị trí khác đủ nhanh để có thể in một cách chính xác và đúng thời gian. Chương I Nhập Môn Trang I.5 Cơ Sở Tự Động Học Phạm Văn Tấn Chương I Nhập Môn Trang I.6 0 t1 t2 θr(t) θc(t) Định vị in Thời gian H.1_8: Input và output của sự điều khiển bánh xe in. Hình H.1_8 trình bày input và output tiêu biểu của hệ thống. Khi một lệnh tham khảo được đưa vào (gõ bàn phím), tín hiệu được trình bày như một hàm nấc (step function). Vì mạch điện của motor có cảm kháng và tải cơ học có quán tính, bánh xe in không thể chuyển động đến vị trí mong muốn ngay tức khắc. Nó sẽ đáp ứng như hình vẽ và đến vị trí mới sau thời điểm t1. Từ 0 đến t1 là thời gian định vị. Từ t1 đến t2 là thời gian in. Sau thời điểm t2, hệ thống sẵn sàng nhận một lệnh mới. 4. Hồi tiếp và các hiệu quả của nó : Trong những thí dụ ở trên, việc sử dụng hồi tiếp chỉ với chủ đích thật đơn giản, để giảm thiểu sự sai biệt giữa tiêu chuẩn tham khảo đưa vào và tín hiệu ra của hệ thống. Nhưng, những hiệu quả có ý nghĩa của hồi tiếp trong các hệ thống điều khiển thì sâu xa hơn nhiều. Sự giảm thiểu sai số cho hệ thống chỉ là một trong các hiệu quả quan trọng mà hồi tiếp có tác động lên hệ thống. Phần sau đây, ta sẽ thấy hồi tiếp còn tác động lên những tính chất của hệ thống như tính ổn định, độ nhạy, độ lợi, độ rộng băng tần, tổng trở. r + _ C b G H e H.1_9: Hệ thống có hồi tiếp. Xem một hệ thống có hồi tiếp tiêu biểu như (H.1_9). Trong đó r là tín hiệu vào. C là tín hiệu ra. G và H là các độ lợi. GH G r CM +== 1 (1.1) Cơ Sở Tự Động Học Phạm Văn Tấn a) Hiệu quả của hồi tiếp đối với độ lợi toàn thể (overall Gain). So với độ lợi của hệ vòng hở (G), độ lợi toàn thể của hệ vòng kín (có hồi tiếp) có thêm hệ số 1+GH. Hình H.1_9 là hệ thống hồi tiếp âm, tín hiệu hồi tiếp b có dấu (-). Lượng GH tự nó có thể bao gồm dấu trừ. Do đó, hiệu quả tổng quát của hồi tiếp là làm tăng hoặc giảm độ lợi. Trong một hệ điều khiển thực tế, G và H là các hàm của tần số f. Suất GH+1 có thể lớn hơn 1 trong một khoảng tần số nào đó và nhỏ hơn 1 ở một khoảng tần số khác . Như vậy, hồi tiếp sẽ làm tăng độ lợi hệ thống trong một khoảng tần số nhưng làm giảm nó ở khoảng tần số khác. b) Hiệu quả của hồi tiếp đối với tính ổn định. Nói một cách khác không chặt chẽ lắm, một hệ thống gọi là bất ổn khi output của nó thoát khỏi sự kiểm soát hoặc là tăng không giới hạn. Xem phương trình (1.1). nếu GH = -1, output của hệ thống sẽ tăng đến vô hạn đối với bất kỳ input hữu hạn nào. Như vậy, có thể nói rằng hồi tiếp có thể làm một hệ thống (mà lúc đầu ổn định) trở nên bất ổn. Hồi tiếp là một thanh gươm 2 lưỡi. Nếu dùng không đúng cách, nó sẽ trở nên tai hại. Nhưng cũng có thể chứng tỏ được rằng, mối lợi của hồi tiếp lại là tạo được sự ổn định cho một hệ thống bất ổn. Giả sử hệ thống hồi tiếp ở (H.1_9) bất ổn vì GH = -1. Bây giờ, nếu ta đưa vào một vòng hồi tiếp âm nữa, như (H.1_10) . c e r + _ G H + _ F Độ lợi toàn thể của hệ thống bây giờ sẽ là : GFGH G r c ++= 1 (1.2) Nếu do những tín chất của G và H làm cho vòng hồi tiếp trong bất ổn, vì G.H = -1. nhưng toàn thể hệ thống có thể vẫn ổn định bằng cách chọn lựa độ lợi F của vòng hồi tiếp ngoài. Chương I Nhập Môn Trang I.7 Cơ Sở Tự Động Học Phạm Văn Tấn c) Hiệu quả của hồi tiếp đối với độ nhạy. (Sensibility) Độ nhạy thường giữ một vai trò quan trọng trong việc thiết kế các hệ thống điều khiển. Vì các thành phần vật lý có những tín chất thay đổi đối với môi trường xung quanh và với từng thời kỳ , ta không thể luôn luôn xem các thông số của hệ thống hoàn toàn không đổi trong suốt toàn bộ đời sống hoạt động của hệ thống. Thí dụ, điện trở dây quấn của một động cơ điện thay đổi khi nhiệt độ tăng trong lúc vận hành. Một cách tổng quát, một hệ điều khiển tốt sẽ phải rất nhạy đối với sự biến đổi của các thông số này để có thể giữ vững đáp ứng ra. Xem lại hệ thống ở (H.1_9). Ta xem G như là một thông số có thể thay đổi. Độ nhạy toàn hệ thống được định nghĩa như sau: GG MMS MG / / δ δ= (1.3) M: độ lợi toàn hệ thống. Trong đó: δM chỉ sự thay đổi thêm của M G.δM/M và δG/G chỉ phần trăm thay đổi của M và G. Ta có: GHM G G MS MG +== 1 1 δ δ (1.4) Hệ thức này chứng tỏ hàm độ nhạy có thể làm nhỏ tuỳ ý bằng cách tăng GH, miễn sao hệ thống vẫn giữ được sự ổn định. Trong một hệ vòng hở, độ lợi của nó sẽ đáp ứng kiểu một - đối - một đối với sự biến thiên của G. Một cách tổng quát, độ nhạy toàn hệ thống của một hệ hồi tiếp đối với những biến thiên của thông số thì tuỳ thuộc vào nơi của thông số đó. Người đọc có thể khai triển độ nhạy của hệ thống (H.1_9) theo sự biến thiên của H. d) Hiệu quả hồi tiếp đối với nhiễu phá rối từ bên ngoài. Trong suốt thời gian hoạt động, các hệ thống điều khiển vật lý chịu sự phá rối của vài loại nhiễu từ bên ngoài. Thí dụ, nhiễu nhiệt (thermal noise) trong các mạch khuếch đại điện tử, nhiễu do tia lửa điện sinh từ chổi và cổ góp trong các động cơ điện Hiệu quả của hồi tiếp đối với nhiễu thì tuỳ thuộc nhiều vào nơi mà nhiễu tác động vào hệ thống. Không có kết luận tổng quát nào. Tuy nhiên, trong nhiều vị trí, hồi tiếp có thể giảm thiểu hậu quả của nhiễu. Xem hệ thống ở (H.1_11) Chương I Nhập Môn Trang I.8 Cơ Sở Tự Động Học Phạm Văn Tấn Chương I Nhập Môn Trang I.9 Ở đó e = r ệu trên nhiễu (signal to noise ratio) được định nghĩa: n (nhiểu) r + _ e + + C G1 G2 H Hình H.1 11 Ouput của hệ có thể được xác định bằng nguyên lý chồng chất (super position) - Nếu không có hồi tiếp, H = 0 thì output nGeGGC ... 221 += (1 - 5) Tỷ số tín hi n eG nG eGG nhieudooutput uhitíndooutput N S .e 1 2 21 === (1.6) ể tăng tỷ số S/N hiển nhiên là phải tăng G1 hoặc e/n. Sự thay đổi G2 không ảnh hưởng Nếu có hồi tiếp, output của hệ thống khi r và n tác động đồng thời sẽ là : Đ đến tỷ số. - n HGG Gr HGG GGC 21 2 21 21 11 +++= (1.7) So sánh (1.5) và (1.7), ta thấy thành phần do nhiễu của (1.7) bị giảm bởi hệ số 1+ G- 1G2 H. Nhưng thành phần do tín hiệu vào cũng bị giảm cùng một lượng. Tỷ số S/N bây giờ là: n rGNS 1 212 2121 H) GG(1n / G H) GGr /(1 GG/ =+ += (1.8) à cũng bằng như khi không có hồi tiếp. Trong trường hợp này, hồi tiếp không có hiệu qu V ả trực tiếp đối với tỷ số S/N của hệ thống. Tuy nhiên , sự áp dụng hồi tiếp làm nảy ra khả năng làm tăng tỷ số S/N dưới vài điều kiện. Giả sử rằng suất G1 tăng đến G1’và r đến r’, các thông số khác không thay đổi , output do tín hiệu vào tác động riêng (một mình) thì cũng bằng như khi không có hồi tiếp. Nói cách khác ta có : Cơ Sở Tự Động Học Phạm Văn Tấn rGG HGG rGGC n 21 21 21 0 '1 '' =+== (1.9) Với sự tăng G1, G1’ output do nhiễu tác đông riêng một mình sẽ là: HGG nGC r 21 2 0 '1 +== (1.10) Nhỏ hơn so với khi G1 không tăng. Bây giờ tỷ số S/N sẽ la: H) GG'1( H) GG'(1n / G r GG 211 ... ng hở là các cực của hàm chuyển vòng kín. - Nếu K trở nên rất lớn, nghiệm của (7.1), nghiệm của (7.1) là nghiệm của đa thức N(S), đó là các zero của hàm chuyển vòng hở GH. Vậy khi K tăng từ 0 đến ∞, qũi tích của các cực vòng kín bắt đầu từ các cực vòng hở và tiến đến chấm dứt ở các zerocủa vòng hở. Vì lý do đó, ta quan tâm đến hàm chuyển vòng hở G(S).H(S) khi vẽ QTNS của các hệ vòng kín. Thí dụ 7.1: Xem hàm chuyển vòng hở của một hệ hồi tiếp đơn vị: S2S )1S(K D KNGH 2 + +== Với H=1, hàm chuyển vòng kín: )1S(KS2S )1S(K R C 2 +++ += Các cực vòng kín: 21 K4 11)K2( 2 1S +++−= 2 2 K4 11)K2( 2 1S +−+−= - Khi K=0 ; S1=0 ; S2= -2 - Khi K=∞ ; S1= -1 ; S2= -∞ Qũi tích các nghiệm này được vẽ như là một hàm của K (với K > 0) K=∞ K=1,5 K=0 K=∞ K=1,5 K=0 -∞ -3 -2 -1 0 jω σ H. 7.1 QTNS gồm hai nhánh: - Nhánh 1: di chuyển từ cực vòng hở tại gốc tọa độ (ứng với K=0) đến zero vòng hở tại -1 (ứng với K=∞). - Nhánh 2: di chuyển từ cực vòng hở tại -2 (ứng với K=0) đến zero vòng hở tại -∞ (ứng với K=∞). Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.4 III. TIÊU CHUẨN VỀ GÓC PHA VÀ SUẤT Để một nhánh của QTNS đi ngang qua một điểm S1 trong mặt phẳng S, điều kiện cần là S1 phải là nghiệm của phương trình (7.1) với vài trị gia thực của K. D(S1) + KN(S1) = 0 (7.2) Suy ra: (7.3) 1)S(D )S(KN)S(H).S(G 1 1 11 −== Phương trình (7.3) chứng tỏ: - Suất: (7.4 K )S(N )S(D1)S(H).S(G 1 1 11 =⇒= ) - Góc pha: arg G(S1).H(S1) = 1800 + 3600l ; l = 0, ±1, ±2 .. arg G(S1).H(S1) = (2l + 1)π rađ (7.5) ⎩⎨ ⎧ <π >π+= 0K; rad 2l 0K ; rad )1l2( )S(D )S(N arg 1 1 (7.6) Phương trình (7.4) gọi là tiêu chuẩn của suất và (7.6) gọi là tiêu chuẩn về góc để một điểm S1 nằm trên QTNS. Góc và suất của G(S).H(S) tại một điểm bất kỳ nào trong mặt phẳng S đều có thể xác định được bằng hình vẽ. Với cách ấy, có thể xây dựng QTNS theo phương pháp thử và sửa sai (Trial and error) nhiều điểm trên mặt phẳng S. * Thí dụ 7.2: Xem hàm chuyển vòng hở của thí dụ 7.1, chứng tỏ S1=-0,5 là một điểm nằm trên QTNS, khi K=1.5 1 )5.1(5.0 )5.0(5.1)S(GH 1 −=−= Vậy thỏa tiêu chẩn về suất và pha, nên S1 nằm trên QTNS. Ở H.7.1, điểm S1=-0.5 nằm trên QTNS, đó là một cực của vòng kín với K=1.5. • Thí dụ 7.3: Hàm chuyển vòng hở của hệ là ω=+= 2)2()( SS KSGH . Tìm arg GH(j2) và )2j(GH . Trị giá nào của K làm j2 nằm trên QTNS? Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.5 -2 -1 0 jω σ 450 900 J2 J1 Hình 7.2 2)22j(2j K)2j(GH += arg GH(j2) = -900-450-450 = -1800 16 K )22(2 K )2j(GH 2 == Để điểm j2 nằm trên QTNS, thì 1)2j(GH = khi đó K=16 * Thí dụ7.4: Chứng tỏ điểm 3j1S1 +−= nằm trên QTNS. Cho ))()(( ) 4S2S1S S +++=( KGH với K > 0, và xác định trị K tại điểm đó. -4 -2 -1 jω S1 j 3 0000 1 1 180306090 )3j3)(3j1(3j 1arg )S(D )S(N arg −=−−−=++= Để thỏa tiêu chuẩn suất, 1)S(GH 1 = thì: σ 600 900300 Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.6 ( ) 1212.4.33j3)3j1(3j )S(N )S(D K 1 1 ==++== SỐ ĐƯỜNG QUĨ TÍCH: Số đường quĩ tích, hay là số nhánh QTNS, bằng với số cực của hàm chuyển vòng hở GH. • Thí dụ 7.4: Với )4S(S )2S(K)S(GH 2 + += , QTNS sẽ có 3 nhánh. IV. QUĨ TÍCH TRÊN TRỤC THỰC Nhánh của QTNS nằm trên trục thực của mặt phẳng S được xác định bằng cách đếm toàn bộ số cực hữu hạn và số zero của GH. 1. Nếu K>0: Nhánh của QTNS trên trục thực nằm bên trái của một số lẻ các cực và zero. 2. Nếu K<0: Nhánh của QTNS trên trục thực nằm bên trái của một số chẵn các cực và zero. Nếu không có điểm nào trên trục thực nằm bên trái một số lẻ các cực và zero, thì có nghĩa là không có phần nào của QTNS với K>0 nằm trên trục thực. Điều tương tự cũng đúng với K<0. * Thí dụ 7.5: Xem sơ đồ cực và zero của một hàm chuyển vòng hở GH như hình vẽ jω σ H. 7.3 -4 -2 0 -1 j -j - Phần đậm trên trục thực, từ 0 đến -2 và từ -4 đến -∞ là QTNS với K>0 - Phần còn lại của trục thực, từ -4 đến -2 và từ -0 đến +∞ là QTNS với K<0 Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.7 V. CÁC ĐƯỜNG TIỆM CẬN . Với những khoãng xa gốc trong mặt phẳng s, các nhánh của QTNS tiếp cận với một tập hợp các đường thẳng tiệm cận (asymptote) Các đường tiệm cận này xuất phát từ một điểm trên trục thực của mặt phẳng s, và gọi là tâm tiệm cận σc. mn zp n 1i m 1i ii c − − −=σ ∑ ∑ = = (7.6) Trong đó : -pi là các cực ; -zI là các zero của GH. n là số cực ; m là số zero . Góc tạo các đường tiệm cận và trục thực cho bởi : ⎪⎪⎩ ⎪⎪⎨ ⎧ − − + =β mn 180)l2( mn 180)1l2( (7.7) Với k > 0 l = 0 ,1, 2 , .. , n-m-1 Đưa đến kết quả : số đường tiệm cận = n – m (7.8) * Thí dụ 7–6 : Tâm tiệm cận của )4s(s )2s(kGH 2 + += cho bởi : 1 2 24 c −=−−=σ n – m =2 ⇒ có hai đường tiệm cận. Góc của cúng đối với trục trực là : β = 90o ; β = 2700 ; k > 0 H. 7-4 900 2700 jω -4 -1 Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.8 VI. ĐIỂM TÁCH (Break away point, saddle point). Điểm tách σb là một điểm trên trục thực, tại đó hai hay nhiều nhánh QTNS đi khỏi (hoặc đến) trục thực. Điểm tách là nghiệm của phương trình : Hai nhánh rời khỏi trục thực Hai ế jω jω σ σ σb σb ∑∑ == +σ =+σ m 1i ib n 1i ib z 1 p 1 (7.8) Trong đó : - p i : các cực ; -zi : các zero * Thí dụ 7-7 : Xác định điểm tách của : )2s()1s(s kGH ++= Giải phương trình : 02 1 1 11 bbb =+σ++σ+σ ⇒ 3σb2 + 6σb + 2 = 0 . Phương trình có hai nghiệm : σb1 = -0.423 ; k > 0 σb2 = -1,577 ; k < 0 jω σ -2 -1 σb VII. GÓC XUẤT PHÁT VÀ GÓC ĐẾN Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.9 1). Góc xuất phát của QTNS từ một cực phức cho bởi : θD = 1800 + arg GH’ (7.9) Trong đó arg GH’ là góc pha của GH được tính tại cực phức, nhưng bỏ qua sự tham gia của cực này. * Thí dụ 7-8 : Xem hàm chuyễn vòng hở : )j1s()j1s( )2s(kGH −+++ += , k > 0 - Góc xuất phát của QTNS tại cực phức s = -1 +j tính như sau : arg GH’ = 450 – 900 = -450 θD = 1800 – 450 = 1350 1350 2250 900 450 -j +j -2 -1 - Góc xuất phát của QTNS tại cực phức s = -1 -j tính như sau : arg GH’ = 3150 – 2700 = 450 θD = 1800 + 450 = 2250 H.7-7 2). Góc đến một zero phức của QTNS cho bởi : θA = 1800 - arg GH’’ (7.10) Trong đó GH’’ là góc pha của GH được tính tại zero phúc đó, nhưng bỏ qua sự tham gia của zero này. * Thí dụ 7-9 : Xem : )( ))(( 1ss jsjskGH + −+= ; k > 0 - Góc đến tại zero phức s = j tính như sau : arg GH’’ = 900 – 900 - 450= - 450 θA = 1800 –(- 450 ) = 2250 Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.10 -1 900 450 -j j H.7-8 VIII. PHƯƠNG PHÁP VẼ QTNS . Để ve QTNS chính xác và dễ dàng, có thể theo các bước sau : - Xác định các nhánh nằm trên trục thực. - Tính tâm, góc tiệm cận. Vẽ các đường tiệm cận. - Xác định các góc xuất phát từ các cực phức và góc đến các zero phức ( nếu có). - Xác định điểm tách. - Vẽ các nhánh sao cho mỗi nhánh xuất phát tại 1 cực rồi chấm dứt tại một zero, hoặc tiến về ∞ dọc theo một đường tiệm cận. - Ap dụng tiêu chuẩn về góc pha cho các điểm nằm trên QTNS để hình vẽ được chính xác. - Tiêu chuẩn về suất dùng để xác định các trị giá của k dọc theo các nhánh. Vì các cực phức của hệ xuất hiện từng cặp phức liên hợp, nên QTNS thì đối xứng qua trục thực. Vậy chỉ cần vẽ nữa trên của QTNS. Tuy nhiên, cần nhớ là các cực phức và zero phức nữa dưới của QTNS cũng phải thỏa điều kiện về suất và góc pha. Thông thường, với chủ đích phân tích và thiết kế, một QTNS chính xác chỉ cần thiết ở một vài vùng của mặt phẳng s. Khi đó, tiêu chuẩn về góc và suất chỉ áp dụng cho những vùng này để có thể vẽ dạng chính xác của quĩ tích. Thí dụ 7-10 : QTNS của hệ kín có hàm chuyễn vòng hở là : )4s()2s(s kGH ++= , k >0 Được vẽ như sau : - Nhánh trên trục thực nằm từ 0 đến -2 và từ -4 đến -∞ - Tâm tiệm cận, được xác định bởi phương trình (7.6). σc = - (2+4) /3 = -2 Có 3 đường tiệm cận, định vị bằng các góc β được xác định bởi (7.7) : β = 600 , 1800 và 3000 - Vì có hai nhánh cùng nằm trên trục thực giữa 0 và 2, nên có một điểm tách tồn tại trong đoạn này. Vị trí điểm tách xác định bởi : Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.11 845.0 08123 0 4 1 2 11 b b 2 b bbb −=σ =+σ+σ =+σ++σ+σ - Tiêu chuẩn về góc và suất được áp dụng lên từng điểm lân cận của đường quĩ tích vẽ phỏng, để xác định vị trí chính xác của các nhánh trong phần phức của mặt phẳng s. H.7-9 k=48 k=15 k=0 -6 -5 -4 σc k=48 k=20 jω 8j Hình 7.10 Vẽ QTNS cho thí dụ 7-10 trong trường hợp k < 0 k=48 k=20 k=7 k=7 8j− J2 J1 k=0 σ k=0 k=7 k=15 σb k=48 k=20 k=48 k=20 k=7 k=7 -2 600 σ jω -4 H.7-10 Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.12 Cách vẽ cũng tương tự mhư trường hợp k>0. σb = -3.115 ; β = 00 ; 1200 ; 2400 IX. HÀM CHUYỂN VÒNG KÍN VÀ ĐÁP ỨNG TRONG MIỀN THỜI GIAN Hàm chuyển vòng kín C/R được xác định dễ dàng từ QTNS với một trị giá riêng của k. Từ đó, ta có thể tìm được đáp ứng của hệ ở miền thời gian C(t) bằng cách lấy biến đổi laplace ngược C(s) Xem hàm chuyển vòng kín C/R của một hệ hồi tiếp đơn vị : G G R C += 1 (7.9) Hàm chuyển vòng hở là biểu thưc hữu tỷ )ps(.......)ps)(ps( )zs(......)zs)(zs(k )s(D )s(NkG n21 n21 +++ +++== (7.10) -zi là các zero ; -pi là các cực của G kND kN R C += (7.11) Rõ ràng C/R và G có cùng zero, nhưng không cùng cực ( trừ khi k=0 ). )s)....(s)(s( )zs)....(zs)(zs(k R C n21 m21 α+α+α+ +++= (7.12) với là n cực vòng kín. Vị trí các cực này được xác định trực tiếp từ QTNS với vị trí giá riêng của độ lợi vòng hở k. iα− Thí dụ 7.11: Xem hệ thống có hàm chuyển vòng hở là ; )1s( )2s(kGH 2+ += k>0 QTNS được vẽ ở hình 7.11 Vài trị giá của k được chỉ tại những điểm ký hiệu bằng một tam giác nhỏ. Đây là các cực vòng kín tương ứng với những trị riêng của k. Với k=2, các cực là j21 +−=α− và j22 −−=α− Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.13 . k=4 ωj H.7.11 Vậy )j2s)(j2s( )2s(2 R C −+++ += Khi hệ có hồi tiếp đơn vị: GH1 G R C += D kGH = (7.13) X. NGƯỠNG ĐỘ LỢI VÀ NGƯỠNG PHA TỪ QTNS . • Ngưỡng độ lợi là hệ số mà trị thiết kế của k có thể nhận vào trước khi hệ vòng kín trở nên bất ổn. Nó có thể được xác định từ QTNS. Nếu QTNS không cắt trục ảo, ngưỡng là độ lợi của ∞. Thí dụ 7.12: Xem hệ hình 7.12. Trị thiết kế của k là 8. Tại giao điểm của QTNS và trục ảo, k = 64. Vậy ngưỡng độ lợi là 64/8 = 8. k=2 k=2 -3 -2 -1 k=1 k=1 - - j1 - j1 α Trị của k tại giao điểm của QTNS với trục ảo Ngưỡng độ lợi = Trị thiết kế của k Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.14 8 (s + 2)3 R + = H.7.12 j 1 j 2 -j1 -j2 -1 j√12 -2 3 cực k=8 k=8 k=64 k=64 H.7.13 • Ngưỡng pha của hệ cũng được xác định từ QTNS. Cần thiết phải tìm điểm jω1 trên trục ảo để cho 1)1j(GH =ω , với trị thiết kế của k k)1j(N/)1j(D =ωω thiết kế Thường cần đến phương pháp thử- và-sữa sai để định vi jω1. Vậy ngưỡng pha được tính từ argGH(jω) là: ωPM =1800 +argGH(jω1) (7.15) Thí dụ 7.13: Xem hệ như hình 7.14. QTNS vẽ ở hình H.7.15. Điểm trên trục ảo là làm cho 2)41j(1j 24)1j(GH +ωω=ω = 1. 1 s(s + 2)2 R + = - = 24 C H 7 với ω1 = 1.35 Góc pha của GH(j1.35) là 129.60 Vậy ngưỡng pha là ωPM =1800 - 129.60 = 50.40 • Lưu ý: Để xác định tần số và độ lợi tại giao điểm của trục ảo với QTNS, có thể dùng bảng Routh. Ta đã biết rằng một hàng các zero trong hàng s1 của bảng Routh cho biết đa thức của một cặp nghiệm thoả phương trình hổ trợ : AS2 + B = 0 (7.16). Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.15 Trong đó A, B là phần tử thứ nhất và thứ hai của hàng S2. Nếu A và B cùng dấu, nghiệm của phương trình (7.16) là ảo ( nằm trên trục jω ) Vậy nếu bảng Routh được viết cho hàm đặc trưng của hệ, các trị của k và ω ứng với giao điển QTNS và trục ảo có thể được xác định. Thí dụ : Xem hệ với GH như sau 2)2( += SS kGH Phương trình đặc trưng vòng kín là: S3 + 4 S2 + 4S + k = 0. Bảng Routh: Hàng S1 thì bằng không ứng với k=16. Vậy phương trình hỗ trợ trở nên: 4 S2 + 16 = 0. Vậy với k=16 phương trình đặc trưng có các nghiệm 2js ±= và QTNS cắt trục ảo tại j2 S3 S2 S1 S0 1 4 4 k (16-k)/4 k BÀI TẬP CHƯƠNG VII VII.1: Xác định nhánh của QTNS nằm trên trục thực trong các trường hợp: a. ; )j3s)(j3s)(1s( )2s(kGH −++++ += k>0 b. ; )2s()1s(s kGH 2 ++= k>0 VII.2: Tìm tâm, góc và vẽ các đường tiệm cận cho ; )4s)(j3s)(j3s)(1s( )2s(kGH +−++++ += k>0 VII.3: Vẽ các đường tiệm cận khi k>0 và k<0 cho )j1s)(j1s)(2s(s kGH −++++= VII.4: Tìm điểm tách cho )3j1s)(3j1s( )2s(kGH −+++ += Cơ Sở Tự Động Học Phạm Văn Tấn Chương VII Phương Pháp Quĩ Tích Nghiệm số Trang VII.16 VII.5: Xác định góc xuất phát và góc đến tại các cực và zero phức của hàm chuyển vòng hở. ; )j2s)(j2s(s )j1s)(j1s(kGH −+ −+++= k>0 VII.6: Vẽ QTNS cho ; )j2s)(j2s)(1s( kGH ++−++= k>0 VII.7: Vẽ QTNS cho ; )j3s)(j3s)(1s( )2s(kGH −++++ += k>0 VII.8: Vẽ QTNS với k>0 và k<0 cho )4s)(3s)(1s(s kGH +++= VII.9: Vẽ QTNS với k>0 cho hàm chuyển vòng hở trong các trường hợp sau: a) )8s)(6s(s kGH ++= b) )9s(s )1s(kGH 2 + += c) )10j10s)(10j10s)(14s( )8s(kGH −++++ += d) )9j15s)(9j15s)(10s)(5s( kGH −+++++= VII.10: Xác định ngưỡng độ lợi và pha cho hệ thống với hàm chuyển vòng hở của bài tập 7.9d nếu độ lợi k được thiết kế là 20,000. *********************** Cơ sở tự động học Phạm Văn Tân THAM KHẢO 1. BENJAMIN C. KUO. Automatic Control Systems. Prentice - Hall Company Ltd. 2. BRUCE A. CHUBB. Modem Analytical and Desin of Instrument Servomechanism. Addison-Wesley publising company. 3. GEORGE J.THALER & ROBERT G. BROWN. Analytical and Desin of Feedback Control System. Mc Graw-Hill Book Company. 4. JOSEPH.J. DISTEFANO, ALLEN R. STUBBERUD & JVAN J. WILLIAMS. Feedback Control System. Mc Graw-Hill Book Company. 5. M. GOPAL. Digital control and stase variable methods. Mc Graw-Hill Book Company. 6. RICHART C. DORF. Time Domain Analysis and Desin of Control System - Addison-Wesley publising company. 7. Y.H.KU. Analysis and Control of Linear Systems. International Texbook Company. Trang phụ lục 1 Cơ sở tự động học Phạm Văn Tân PHỤ LỤC Những cặp biến đổi Laplace thường dùng trong việc phân tích các hệ tự động. Trang phụ lục 1 Cơ sở tự động học Phạm Văn Tân Trang phụ lục 1
File đính kèm:
- bai_giang_co_so_tu_dong_hoc_pham_van_tan.pdf